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Recap from Part I

Formal Σ-languages are subsets of Σ∗, the set of finite words over a

finite alphabet Σ.

Finite-state automata (deterministic or not) describe the regular

languages.

Monadic second order logic also describes exactly the regular

languages.

First order logic describes a (strictly) smaller class of languages.

The regular languages form a Boolean algebra with quotient

operators.

Every regular language L defines a finite closed Boolean subalgebra

B(L).

Monoids are also somehow important (but why?)
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Monoids

Examples

The set Σ∗, with multiplication u · v := uv .

For any set P, the set of functions from P to itself, (P → P), with

multiplication f · g := f ◦ g .

In particular, an NFA A = (Q,Σ, δ) gives, for every a ∈ Σ, a function

♦a in (P(Q)→ P(Q)), defined by

♦a(R) := {q | q a→ q′ for some q′ ∈ R}.
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Exercises

1 Show that Σ∗ is a monoid.

2 Show that (P → P) is a monoid.

3 Show that Σ∗ is the free monoid on Σ, i.e., that for any monoid M

and any function f : Σ→ M, there is a unique homomorphism

f̄ : Σ∗ → M extending f .

4 Applying (3) to the function ♦ : Σ→ (P(Q)→ P(Q)), give an

explicit description of the function ♦̄ : Σ∗ → (P(Q)→ P(Q)).

5 (*) Show that A with initial states I and final states F accepts a

word w ∈ Σ∗ if, and only if, I ∩ ♦̄w (F ) 6= ∅.
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Regular languages and monoids

Proposition

A Σ-language L is regular if, and only if, there exists a homomorphism

η : Σ∗ → M, with M a finite monoid, such that L = η−1(R) for some

R ⊆ M.

Proof ingredients.

The exercises on the previous slide show how to build a monoid

homomorphism from an NFA.

For the converse, notice that a homomorphism from Σ∗ to a monoid

‘is’ a (deterministic) automaton.
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Regular languages are:

the languages recognized by finite non-deterministic automata.

the languages recognized by finite deterministic automata.

the languages definable in monadic second order logic.

the inverse images of homomorphisms from the free monoid to a

finite monoid.

the unions of classes under finite index congruences on a free monoid.

Today, we will see how these characterizations are connected to each other

through Stone duality.
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Outline Part II

1 Finite Duality and Regular Languages

Boolean algebras

Finite Stone duality

Duality for regular languages

2 Full Duality and Varieties

First-order logic and aperiodic monoids

Full Stone duality
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Stone duality

“In January last year I gave a course at the Indian Winter School

in Logic and went on an excursion to Varanasi and Sarnath, the

birthplace of Buddhism. Upon entering the amazing Archaeologi-

cal Museum at Sarnath, our guide opened with: ‘Duality underlies

the world.’ This is the kind of sweeping statement that every

mathematician, at least secretly, would like to believe about their

particular focus...”

M. Gehrke. Duality. Oratie (inaugural lecture) at Radboud University

Nijmegen, 2009. url: http://repository.ubn.ru.nl/bitstream/

handle/2066/83300/83300.pdf
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Stone duality

Stone duality was introduced by mathematician M. H. Stone in the

1930’s.

In logic, it underpins the connection between syntax and semantics.

The dual of a collection of formulas (syntax) is a space of possible

worlds/states (semantics) interpreting the formulas, and vice versa.

A key idea, and the meaning of the term ‘duality’ (= dual categorical

equivalence), is that the direction of morphisms is reversed.

More information = Less possible worlds.

More possible worlds = Less information.

Formulating duality theory precisely requires some algebra, and, for

the non-finite case, topology.

We will focus on the applications to regular languages.
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1 Finite Duality and Regular Languages

Boolean algebras

Finite Stone duality

Duality for regular languages
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Boolean algebras

An (abstract) Boolean algebra is a tuple (B,∨,¬,⊥), where
I B is a set,
I ∨ is a binary operation,
I ¬ is a unary operation,
I ⊥ is an element of B,
I for any classical tautology ϕ(x̄)↔ ψ(x̄) and b̄ in B, ϕ(b̄) = ψ(b̄) in B.

For example, a ∨ b = b ∨ a, ¬¬a = a, a ∨ ⊥ = a, . . . .

The last condition can be replaced by a finite list of axioms.

Boolean algebras are partially ordered: a ≤ b iff a ∨ b = b.
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Boolean algebras: examples

Examples

For any set X , (P(X ),∪, ()c, ∅) is a Boolean algebra.

The Lindenbaum algebra of classical propositional logic on a set of

variables V is the free Boolean algebra on V .

For any topological space X , the clopen (= closed and open) subsets

are a Boolean subalgebra of P(X ).
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Finite Stone duality: algebras

Proposition

Every finite Boolean algebra B is isomorphic to a Boolean algebra of the

form P(X ), for some set X .

Proof.

Take X = At(B), the set of atoms of B.

Identify b ∈ B with the set, b̂, of atoms below it.

Example

If V = {p1, . . . , pn}, then the Lindenbaum algebra of classical

propositional logic on V is isomorphic to P(X ), where X = {0, 1}V .

In words: a formula of CPL can be identified with the set of valuations in

which it is true.

When V is infinite, the situation is more subtle!
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propositional logic on V is isomorphic to P(X ), where X = {0, 1}V .

In words: a formula of CPL can be identified with the set of valuations in

which it is true.

When V is infinite, the situation is more subtle!
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Finite Stone duality: homomorphisms

Proposition

Every homomorphism between finite Boolean algebras P(Y )→ P(X ) is of

the form f −1 for some function f : X → Y .

In particular, any finite subalgebra of P(X ) has the form

q−1 : P(Y ) ↪→ P(X ), where q : X � Y is a quotient of X .

In other words, any finite subalgebra of P(X ) is the collection of

finite unions of equivalence classes of an equivalence relation on X .
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Subalgebras and equivalence relations

Example

The closed subalgebra generated by the Σ-language L = EVENLENGTH

is

B(L) = {∅, L, Lc,Σ∗} ↪→ Reg(Σ∗).

The dual of this subalgebra is a quotient q : Σ∗ → At B(L).

This quotient is given by the equivalence relation w1 ≡L w2 if, and

only if, the length of w1 and w2 have the same parity.
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Finite Stone duality: regular languages

Let L be a regular Σ-language.

Let B(L) be the finite closed subalgebra of Reg(Σ∗) generated by L.

Then B(L) is the set of unions of equivalence classes under an

equivalence relation ≡L on Σ∗, which can be defined by

w1 ≡L w2 ⇐⇒ for all u, v ∈ Σ∗, uw1v ∈ L iff uw2v ∈ L.

A language L ⊆ Σ∗ is regular if, and only if, ≡L has finite index.
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Duality and regular languages

B(L) is a closed subalgebra of Reg(Σ∗).

It follows that the dual M(L) = Σ∗/≡L of B(L) is a monoid.

The monoid M(L) is the syntactic monoid of L.

The homomorphism q : Σ∗ → M(L) recognizes L:

L = q−1(R) where R = q(L).

Moreover, M(L) is the minimum such monoid quotient of Σ∗:

if q′ : Σ∗ → M ′ recognizes L, then there exists f : M ′ → M(L) such

that fq′ = q.
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Syntactic monoid: Example

Example

Let Σ = {0, 1} and L = EVENLENGTH.

For w1,w2 ∈ Σ∗, w1 ≡L w2 iff the length of w1 and of w2 have the same

parity.

Therefore, M(L) ∼= Z2, the two-element group.

The quotient q : Σ∗ → M(L) is defined by

q(w) := parity of the length of w .

Notice that q(w1w2) = q(w1)⊕ q(w2), i.e., q is a homomorphism.
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Exercises

1 Find the syntactic monoid quotient Σ∗ → M(L) when L = EVENONES.

2 Find the syntactic monoid quotient Σ∗ → M(L) when L = BUY.

3 (*) Find the syntactic monoid quotient Σ∗ → M(L) when L = PW.

4 Conclude from the solutions to (1) – (3) what the closed subalgebras,

B(L), generated by L are.

5 Use ≡L to show that L is not regular when L = N0N1.
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2 Full Duality and Varieties

First-order logic and aperiodic monoids

Full Stone duality
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FO and aperiodics

In Part I, we asked: what is the subalgebra FO(Σ∗) of Reg(Σ∗)?

We now know that any regular language L has a finite syntactic

monoid M(L).

A monoid M is aperiodic if it contains no non-trivial subgroups.

For finite monoids, it is equivalent to say:

the equation xn = xn+1 holds in M for some n.

It is also equivalent to say: xω = xωx ,

where xω is the idempotent power of x .

Theorem (Schützenberger, 1960s)

A language L is first-order definable if, and only if, the syntactic monoid

M(L) is finite and aperiodic.

An algorithm for deciding if a regular language is FO-definable.
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Example of Schützenberger’s Theorem

Example

The syntactic monoid of EVENLENGTH is Z2.

This contains (in fact, is) a group.

By Schützenberger’s theorem, EVENLENGTH is not first order definable.
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Exercise

Using the results from the previous exercise, determine which of the

syntactic monoids for EVENONES, BUY, and PW are aperiodic.

Conclude which of these languages are first order definable.
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Varieties of monoids and languages

A class of finite monoids V is a (pseudo)variety if it is closed under

homomorphic images (H), submonoids (S) and finite products (Pfin).

For a variety of monoids V, define V(Σ∗) to be the class of

Σ-languages L such that M(L) ∈ V.

Then {V(Σ∗)}Σ is a variety of regular languages: a collection of

Boolean subalgebras of Reg(Σ∗) which is closed under inverse images

of homomorphisms Σ∗1 → Σ∗2.

Theorem (Eilenberg)

The map V 7→ V is an order-bijection between varieties of finite monoids

and varieties of regular languages.
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Equations?

Birkhoff’s theorem: varieties of (arbitrary) algebras can be defined by

(finite) equations.

What about (pseudo)varieties of finite algebras?

We need profinite equations.

To explain what these are, and why we need them: full Stone duality.
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Stone duality: general case

Proposition

Every Boolean algebra B can be embedded into a Boolean algebra of the

form P(X )

, and there is a unique such embedding for which the topology

generated by the sets in the image of B is compact and Hausdorff (and

zero-dimensional).

‘Construction’ of the embedding.

Take X to be the set of ultrafilters of B.

Identify b ∈ B with the set, b̂, of ultrafilters containing it.

A Boolean space is a compact Hausdorff zero-dimensional space.

Equivalently, a Boolean space is a profinite object in the category of

topological spaces.
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Stone duality: example

Example

The dual space of the Lindenbaum algebra of CPL on a countable set

V = {p1, p2, p3, . . . } is the Cantor space {0, 1}V .
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Exercises

1 What is the dual space of the Boolean algebra of finite subsets of the

natural numbers and their complements?

2 Use what you know about classical propositional logic to prove that

the Lindenbaum algebra of CPL on a countable set

V = {p1, p2, p3, . . . } can be embedded into P({0, 1}V ).

3 (*) Show that the topology generated by the image of the embedding

in (2) is compact and Hausdorff.

4 (*) Show that the topology generated by the image of the embedding

in (2) coincides with the topology of the Cantor space.
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Duality: categorical level

As in the finite case, all homomorphisms between Boolean algebras

are of the form f −1, for f a continuous function between the dual

spaces.

The categories of Boolean algebras and Boolean spaces are dually

equivalent.

Algebras dual to Spaces

subalgebras ↔ quotient objects

quotient algebras ↔ subobjects

homomorphisms ↔ continuous functions

algebraic operations ↔ co-algebraic operations

unions (directed colimits) ↔ projective limits
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Stone duality: summary

Finite Boolean algebras are power sets.

Boolean algebras are subalgebras of power sets.

Boolean algebra homomorphisms are inverse images.

Boolean algebras are algebras of clopen sets of a compact Hausdorff

topological space, called the dual space.

Subalgebras of the Boolean algebra correspond to quotient spaces of

the dual space.

Quotients of the Boolean algebra correspond to closed subspaces of

the dual space.
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