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About this talk

This talk has a dual aim:

▶ to provide a mathematical overview of Stone duality theory,

and

▶ to invite collaboration on its formalization.
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Topological spaces and frames



Duality between points and opens

A point x of a topological space X determines a collection of open

neighborhoods,

ε(x)
def
= {U ∈ O(X ) | x ∈ U} .

The function ε maps X to its ‘double dual’.

But what is the ‘dual’ of a topological space?

This talk will consider two possible, closely related, answers.
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Frames

A partial order (L,≤) is called a complete lattice if any subset S

has a supremum,
∨
S , and an infimum,

∧
S . (Assuming one of the two suffices.)

A frame is a complete lattice (L,≤) in which finite meets distribute

over arbitrary joins, i.e.,

u ∧
(∨

S
)
=

∨
v∈S

(u ∧ v)

for any u ∈ L and S ⊆ L.
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Examples of frames

▶ The open sets O(X ) of any topological space X :∨
i∈I

Ui =
⋃
i∈I

Ui , U ∧ V = U ∩ V .

▶ The radical ideals RId(R) of any ring R:

∨
i∈I

Ji =

√⊕
i∈I

Ji , I ∧ J = I ∩ J .

Used in a very recent formalization of schemes in Cubical Agda by Zeuner & Hutzler, arXiv:2403.13088v1.

▶ The regular open subsets of any compact Hausdorff space:

∨
i∈I

Ri =
⋃
i∈I

Ri

◦
, R ∧ S = R ∩ S .
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https://arxiv.org/pdf/2403.13088v1.pdf


Continuous functions and frame homomorphisms

A frame homomorphism is a function preserving
∨
, ∧, and ⊤.

A continuous map between topological spaces

f : X → Y

gives a frame homomorphism

f −1 : O(Y )→ O(X ) .

Categorically: we have defined a functor O : Top→ Frmop.

Some people (and some formalization libraries) like to call objects of Frmop locales.

6 / 39



Inverting O
Consider a space X and write L

def
= O(X ).

Can you reconstruct the space X if you only remember L?

The open-neighborhood function ε : X → P(O(X )) gives a way to

interpret points of X as subsets of O(X ). More precisely, ε(x) is

always a completely prime filter of O(X ). (We will see a definition shortly.)

Facts/Definitions.

1. ε is injective if, and only if, X is T0.

2. ε is surjective onto the set of completely prime filters if, and

only if, X is quasi-sober.

3. A space is called sober if it is T0 and quasi-sober, i.e.,

if ε is bijective.
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Let us take stock, or: Faisons le point

We have defined a functor O : Top→ Frmop, and a way to recover

the set X from O(X ), if X is sober.

A few natural questions:

1. How to recover the topology on X?

2. How to recover continuous maps between spaces?

3. Can any frame be reached by the functor O?
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The set of points of a frame

Let L be a frame. A homomorphism

x : L→ 2

to the two-element frame 2 = O(∗) = {0, 1} is called a point of L,

and pt L is the set of points of L.

The same people, and libraries, who call objects of Frmop locales typically denote 2 by 1.

A completely prime filter is a subset F of L such that F = x−1(1)

for some x ∈ pt L.
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The points functor

The set of points of L, pt L, carries a topology

{η(u) : u ∈ L}

where

η(u)
def
= {x ∈ pt L | x(u) = 1} .

Any frame homomorphism f : L→ M gives a dual function

f ∗ : ptM → pt L , x 7→ x ◦ f ,

which is continuous.
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Examples of dual spaces

▶ Points of OX correspond to irreducible closed sets of X :

x : OX → 2 ←→ Cx
def
= X \

(⋃
{U | x(U) = 0}

)
.

▶ Points of RIdR correspond to prime ideals of R:

x : RIdR → 2 ←→ Ix
def
=

⋃
{J ∈ RIdR | x(J) = 1} .

▶ Points of ROX are ... there may not be any! E.g. RO[0, 1].

A point x of a Boolean frame gives an atom ax
def
=

∧
x−1(1).
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A dual adjunction

Theorem (Stone 1936, Strauss 1958, . . . )

The functors

O : Top⇆ Frmop : pt

are an adjunction, with unit and co-unit

εX : X → ptOX and ηL : L→ O pt L .

Formalization: Started at Banff in May 2023,

in Mathlib in October 2023 (PR #4593).

We saw that εX is bijective if, and only if, X is sober.

In that case, it is automatically a homeomorphism.

What about ηL?
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https://leanprover-community.github.io/mathlib4_docs/Mathlib/Topology/Order/Category/FrameAdjunction.html
https://github.com/leanprover-community/mathlib4/pull/4593


Spatial frames

For any frame L, the function ηL : L→ O pt L is surjective (by definition).

L is called spatial if ηL : L→ O pt L is injective.

Theorem (Stone 1936, Strauss 1958, ...)

The adjunction O : Top⇆ Frmop : pt cuts down to an equivalence

between SoberTop and SpatialFrmop.

Not yet in Mathlib. → Project?
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The (pro)finite setting and coherence



Finite frames

A finite frame is the same thing as a (finite) distributive lattice.

Restricted to this setting, the above duality gives:

Theorem (Birkhoff)

Any finite distributive lattice L is isomorphic to

U(P) def
= {U : U is an upper set} ,

where P is the partially ordered set of join-prime elements of L.

Monotone functions between posets P → Q are in bijection with

complete lattice homomorphisms U(Q)→ U(P).

A start is in Mathlib (Y. Dillies + recent PR by F. Nuccio & me).

→ Project?
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https://leanprover-community.github.io/mathlib4_docs/Mathlib/Order/Birkhoff.html


Boolean algebras

A Boolean algebra is a distributive lattice L with complements, i.e.,

for any x ∈ L, there is ¬x ∈ L with x ∨ ¬x = ⊤ and x ∧ ¬x = ⊥.
(Or: a ring in which x2 = x for all x .)

Corollary (Birkhoff)

Any finite Boolean algebra B is isomorphic to P(X ), where X is

the set of atoms of B.
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Stone duality for Boolean algebras

Stone’s original idea was to extend Birkhoff duality to the infinite:

Theorem (Stone 1937)

Any Boolean algebra B embeds into P(X ), where X is the set of

lattice homomorphisms B → 2.

The topology generated on X by the image of B is compact, T2,

and zero-dimensional, and all such spaces arise in this way.

If B is a frame, then any point of B is a lattice homomorphism,

but the converse is false.

Stone (1936) proved an analogous, but less well-known, theorem for distributive lattices, see below.
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Profinite sets

= a modern categorical view on Stone’s dual spaces for BA’s.

For a set S , write DS for the discrete topological space on S .

A profinite set is any topological space that is a cofiltered limit of

objects DF with F a finite set.

Proposition

The following are equivalent for a topological space X :

1. X is a profinite set;

2. X is compact, T2 and zero-dimensional;

3. X is compact and totally separated, that is, for any x , y ∈ X,

if x ̸= y then there is clopen K ⊆ X such that x ∈ K and y ̸∈ K .
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Profinite sets in Mathlib

“Implementation notes

A profinite type is defined to be a topological space which is

compact, Hausdorff and totally disconnected.

TODO

Define procategories and prove that Profinite is equivalent to

Pro(FintypeCat).”

– Mathlib (on 24 March 2024)

There is some work to do on this interface.
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A First Mile-Stone™

Formalize a proof that the following categories are equivalent:

1. Compact totally separated topological spaces;

2. Cofiltered limits in Top of objects DF with F finite;

3. Finite-limit-preserving functors FinSet→ Set;

4. The Pro-completion of FinSet.

Notes.

1 ⇐⇒ 2 is essentially in Mathlib already but needs to be stated.

1 ⇐⇒ 4 is more or less in lean-liquid and lean-solid.

3 ⇐⇒ 4 is ‘just category theory’ (famous last words).
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Formalizing Stone duality for Boolean algebras

Theorem (Stone 1937)

BAop ≃ Pro(FinSet) .

Proof. Given the First Mile-Stone™, this is easy:

▶ FinBAop ≃ FinSet,

▶ Ind(FinBA) ≃ BA,

▶ Ind(C)op ≃ Pro(Cop).

... but what can we do until the First Mile-Stone is in Mathlib?
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A challenge from Mathlib

Project

Prove the Stone duality theorem that Profinite is equivalent to the

opposite category of boolean algebras. Then the property of being light

says precisely that the corresponding boolean algebra is countable.

Maybe constructions of limits and colimits in LightProfinite become

easier when transporting over this equivalence.

– D. Ásgeirsson in a recent PR (Feb. 2024)

Motivated by this, we had a look at a recent book to see how the

Stone duality theorem is proved there...
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https://github.com/leanprover-community/mathlib4/pull/10391
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Introducing Stone–Priestley duality theory and its 
applications to logic and theoretical computer science, 
this book equips graduate students and researchers 
with the theoretical background necessary for reading 
and understanding current research in the area.

After giving a thorough introduction to the 
algebraic, topological, logical, and categorical 
aspects of the theory, the book covers its advanced 
applications in computer science, namely in domain 
theory and automata theory. These topics are at the 
forefront of active research seeking to unify semantic 
methods with more algorithmic topics in finite model 
theory. Frequent exercises punctuate the text, with 
hints and references provided.

“This book introduces efficiently Stone-Priestley duality 
theory for bounded distributive lattices, thereby laying 
solid mathematical foundations for applications in 
mathematics and computer science. Readers interested 
in the fields of domain theory and automata theory 
will see the general duality theory bearing fruit and 
opening doors to further applications.”
Jorge Almeida, Universidade do Porto

“This book is a textbook and also a research 
monograph. For undergraduates, there is the basic 
duality; for postgraduates, applications in algebra, 
topology, and logic, and to theoretical computer 
science. Then, there are research themes to develop. 
The applications to CS are exciting and not published 
as a book before.”
Mirna Džamonja, IRIF, CNRS-Université de Paris

Topological 
Duality for 
Distributive 
Lattices

Theory and 
Applications

Mai Gehrke and 
Sam van Gool
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Gehrke & G., Topological duality for distributive lattices: Theory and

Applications. Cambridge University Press (2024).
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https://www.cambridge.org/fr/universitypress/subjects/computer-science/programming-languages-and-applied-logic/topological-duality-distributive-lattices-theory-and-applications?format=HB&isbn=9781009349697
https://www.cambridge.org/fr/universitypress/subjects/computer-science/programming-languages-and-applied-logic/topological-duality-distributive-lattices-theory-and-applications?format=HB&isbn=9781009349697


A challenge from Mathlib

Project

Prove the Stone duality theorem that Profinite is equivalent to the

opposite category of boolean algebras. Then the property of being light

says precisely that the corresponding boolean algebra is countable.

Maybe constructions of limits and colimits in LightProfinite become

easier when transporting over this equivalence.

A recent PR by D. Ásgeirsson (Feb. 2024)

Motivated by this, we had a look at a recent book wrote a detailed

proof in LaTeX and started formalizing it (joint work with D.

Ásgeirsson and F. Nuccio).
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https://github.com/leanprover-community/mathlib4/pull/10391
https://www.samvangool.net/stonedualityba.pdf
https://www.samvangool.net/stonedualityba.pdf


Demo

See the file StoneDuality/BooleanDuality.lean in the LFTCM2024

repository.

→ Project: Fill in the sorry’s.

(Methodological point: Making a project with a lot of ‘sorry’ can feel a bit icky to a mathematician, but can be a

useful way to work on formalization.)
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https://github.com/riccardobrasca/LFTCM2024/blob/master/LFTCM2024/StoneDuality/BooleanDuality.lean


Stone duality for distributive lattices

Theorem (Stone 1936)

DLop ≃ Pro(FinT0) .

Proof. Given the Second Mile-Stone™, this is easy:

▶ FinDLop ≃ FinT0,

▶ Ind(FinDL) ≃ DL.

▶ Ind(C)op ≃ Pro(Cop).

What is ProFinT0?
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Spectrality and Coherence

Proposition

A topological space X is a projective limit of finite T0 spaces if,

and only if, it is spectral, that is, compact, sober, and has a basis

of compact-open sets which is closed under finite intersections.

Proposition

A space X is spectral if, and only if, the frame O(X ) is coherent,

that is, its compact elements are a
∨
-dense bounded sublattice.

An element u in a frame L is compact if for any S ⊆ L, u ≤
∨
S

implies u ≤
∨

F for some finite F ⊆ S .
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Examples of spectral spaces

▶ Any finite T0-space.

▶ The Zariski spectrum of any ring R. The associated

distributive lattice consists of the finitely generated radical

ideals of R.

Theorem (Hochster 1969)

Every spectral space is the Zariski spectrum of some ring.

Proof. Interesting.

Corollary

Every finite distributive lattice is the lattice of finitely generated

radical ideals of some ring R.

Formalizing even this corollary is probably tough. Non-trivial paper proof.
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The category of spectral spaces

A spectral space X is a projective limit of finite T0-spaces.

However: not every continuous function X → Y between spectral

spaces factors through the limit diagram!

A function f : X → Y between spectral spaces is called coherent if

f −1(K ) is compact-open for any compact-open set K ⊆ Y .
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Taking stock: Stone’s dualities

BoolAlg ≃op ProFinSet

DistLat ≃op Speccoh

Frm ≃op Topcts

not full! not full!

pt

O
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Distributive lattices and Ordered spaces



Patching up the spectral topology

For a topological space X and x , y ∈ X , the specialization order is

x ⇝ y ⇐⇒ y ∈ cl({x}) .

Any spectral topology σ on a set X has an inverse topology σ∂ ,

which is also spectral, and has the inverse specialization order.

The patch topology σp is the smallest containing both σ and σ∂ .

Proposition

The partially ordered topological space (X , σp,⇝) is compact and

totally order-separated: for any x , y ∈ X, if x ≰ y, then there is a

clopen upper set K ⊆ X such that x ∈ K and y ̸∈ K.

Such a structure is now called a Priestley space, after her Ph.D.

work (1970).
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Spectral and Priestley

Let (X , π,≤) a Priestley space. The topology of open upper sets is

spectral, with inverse the topology of open lower sets.

Proposition

Speccoh is isomorphic to the category of Priestley spaces with

continuous monotone maps.

→ Possible Project

The Hausdorff spectral spaces (= profinite sets) correspond to the

Priestley spaces with trivial specialization order.
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Profinite posets

As with profinite sets, there is a fully faithful functor

D : FinPoset→ Priestley

which maps a finite poset (P,≤) to (P, τdiscrete,≤).

Proposition

The category of Priestley spaces is equivalent to the

Pro-completion of FinPoset.
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Priestley duality

There is a dual equivalence of categories

Spec : DL⇆ Priestleyop : Clp↑ ,

where Spec L is the space of lattice points of L and Clp↑X is the

lattice of clopen upper sets of X .

The frame of open upper sets of Spec L is isomorphic to Idl(L).
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An open mapping theorem and interpolation



Heyting algebras

Remember frames: complete lattices satisfying the law

u ∧
(∨

S
)
=

∨
v∈S

(u ∧ v)

Any frame L admits an operation ⇒, defined as the residual of ∧:

u ⇒ v
def
=

∨
{x ∈ L | u ∧ x ≤ v}

For example, when L = O(X ): U ⇒ V = int((X \ U) ∪ V ).

A Heyting algebra is a distributive lattice in which − ⇒ − exists.

Frame = Complete Heyting algebra (but careful with morphisms!)
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Heyting algebras, dually

Theorem (Esakia 1974)

A distributive lattice L is a Heyting algebra if, and only if, in its

Priestley space Spec L, the upper set generated by an open set is

always open.

Such Priestley spaces are called Esakia spaces.

35 / 39



An open mapping theorem

Inspired by work of Pitts, Ghilardi & Zawadowski on a property of

intuitionistic logic called uniform interpolation, we proved:

Theorem (G. & Reggio 2018)

Any continuous bounded map between finitely copresented Esakia

spaces is an open map.

Via duality, this gives a different, semantic, proof of:

Theorem (Pitts 1992)

Any homomorphism between finitely presented Heyting algebras

has left and right adjoints.
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Uniform Interpolant Calculator: an example of extraction

We recently implemented Pitts’ original construction in Coq.

It enabled us to apply the construction also to other contexts.

Coq lets you extract verified code into the language OCaml.

We transpiled the OCaml program to a Javascript application that

can be run in the browser.

Férée, G., van der Giessen, Shillito (2024)
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https://hferee.github.io/UIML/toc.html
https://hferee.github.io/UIML/demo.html
https://arxiv.org/pdf/2402.10494.pdf


A quote from Stone

Perhaps [the discovery of Stone duality] and other things that have

happened in the course of my research suggest that in many kinds of

mathematical work the key is asking the ‘right’ questions. Once the

question is posed the answer becomes a matter of persistent analysis. Of

course, the big ‘unsolved’ problems (Fermat theorem, Riemann

hypothesis, etc.) may provide counterexamples. Still many problems

seem to become easier when they can be twisted somehow into new

forms converting them into ‘right’ questions.

– M. H. Stone, “A reminiscence on the extension of the

Weierstrass approximation theorem” (1976).
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An updated version?

Perhaps [the formalization of Stone duality] and other things that have

happened in the course of my research suggest that in many kinds of

mathematical work the key is formalizing the ‘right’ sorry’s. Once the

sorry is posted the answer becomes a matter of persistent analysis. Of

course, the big ‘unsolved’ problems (Fermat theorem, Riemann

hypothesis, etc.) may provide counterexamples. Still many problems

seem to become easier when they can be twisted somehow into new

forms converting them into ‘right’ sorry’s.

Thank you for your attention.
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Appendix: Overview of possible project ideas

1. Cut down the sober-spatial equivalence (p. 13)

2. Complete the proof of Birkhoff’s theorem (p. 14)

3. The various equivalent definitions of profinite types (p. 18)

4. Work towards the Mile-Stones (pp. 19 and 25)

5. For the brave: (Finite) Hochster’s theorem (p. 27)

6. Priestley duality (p. 31)

7. Open mapping theorem and semantic interpolation (p. 36)

8. Any other ideas you might have gotten from this presentation

(come talk to me!)
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