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Interpolation

Interpolation is the problem that asks, given a deduction

A ⊢ B

to find C such that

A ⊢ C ⊢ B

and C only uses symbols that are in both A and B.

▶ What are A,B,C? Which symbols? What is ⊢?

We will look at propositional logics, and take symbols to mean

propositional variables.
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The classical case

Suppose that

A(p, q) ⊢ B(p, r)

for propositional formulas A and B.

If ⊢ is classical entailment, then the formula

C (p) := A(p,⊥) ∨ A(p,⊤)

is an interpolant:

A(p, q) ⊢ C (p) ⊢ B(p, r).

So is

C ′(p) := B(p,⊥) ∧ B(p,⊤).
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Uniform interpolants

Note that each of the interpolants

C (p) := A(p,⊥) ∨ A(p,⊤) and C ′(p) := B(p,⊥) ∧ B(p,⊤)

only depends on one of the formulas in the entailment A ⊢ B.

These uniform interpolants encode propositional quantifiers:

C (p) ≡ ∃q. A(p, q) and C ′(p) ≡ ∀q. B(p, q) .

The simple encoding works because classical logic is locally finite:

If we fix a finite set of variables, then there are only finitely many

equivalence classes of formulas with variables from this set.
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The intuitionistic case

Intuitionistic Propositional Logic

is not locally finite.

Even for just 1 variable, we have

infinitely many non-equivalent

formulas:

⊥

p¬p

p ∨ ¬p ¬¬p

¬p ∨ ¬¬p¬¬p → p

...

Still, we have:

Theorem (Pitts 1992)

There exists a computable encoding of propositional quantifiers in

intuitionistic propositional logic.
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Detailed statement of Pitts’ Theorem

For every propositional formula φ(p̄, q), one can compute q-free

formulas

Eq(φ) and Aq(φ),

with variables in p̄,

such that, for any q-free formula ψ,

if φ ⊢ ψ then φ ⊢ Eqφ ⊢ ψ ,

and

if ψ ⊢ φ then ψ ⊢ Aqφ ⊢ φ ,

where φ ⊢ ψ means intuitionistic entailment.
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Aside: Why Pitts proved his theorem
“Some ten or so years ago I tried to prove the negation

of [the theorem] in connection with (...) the question of

whether any Heyting algebra can appear as the algebra of

truth-values of an elementary topos. I established that the

free Heyting algebra on a countable infinity of generators

does not so appear provided [the theorem] does not hold.

It seemed likely to me (and to others to whom I posed the

question) that a [formula] φ could be found for which Apφ

does not exist (although I could not find one!), thus settling

the original question about toposes and Heyting algebras in

the negative. That [the theorem] is true is quite a surprise

to me. (...) It remains an open question whether every

Heyting algebra can be the Lindenbaum algebra of a theory

in intuitionistic higher order logic.”

(Pitts, 1992)
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Intuitionistic propositional quantifiers

In IPC, the simple computation of Eq from the classical setting no

longer works.

For example, when

φ = (¬p → q) ∧ (q → r)

we have

φ[⊥/q] ≡ ¬¬p, φ[⊤/q] ≡ r

but

φ ̸⊢ ¬¬p ∨ r .

In this example, it turns out that Eq(φ) can be computed as

¬p → r ,

which is equivalent to φ[¬p/q].
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A finite basis for interpolants

Given a formula φ(p̄, q), we have

φ(p̄, q) ⊢
∧

{ψ(p̄) | φ ⊢ ψ}.

The expression on the right is q-free, but not a formula.

The idea is to replace it by

Eq(φ)
def
=

∧
Eq(φ)

where Eq(φ) is a finite basis for the set of consequences of φ.

The computation of Aq(φ) is similar, using a disjunction of Aq(φ).

Pitts’ definition recurses on the shape of the formula A, using

already computed sets Eq(φ′) and Aq(φ
′) for smaller formulas φ′.
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Computing intuitionistic propositional quantifiers

Pitts constructs quantifiers, and proves correctness, by induction

on proofs of A ⊢ B.

The idea is that Ep(A) represents ‘all possible consequences of A in

a finite terminating proof search’ (Iemhoff 2019, v.d.Giessen 2023).

▶ What proof calculus to use?
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A terminating sequent calculus

Gentzen calculus LJ has contraction, and the rule:

Γ, φ1 → φ2 ⊢ φ1 Γ, φ2 ⊢ ψ
Γ, φ1 → φ2 ⊢ ψ

which make proof search not obviously terminating.

Classical solution: G4ip uses multisets as sequents, and replaces

the →-left rule by a finer case analysis on φ1.
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G4ip

Replace →-left rule by the following four rules:

F , p,A ⊢ C

F , p, p → A ⊢ C

F ,A1 → (A2 → B) ⊢ C

F , (A1 ∧ A2) → B ⊢ C

F ,A1 → B,A2 → B ⊢ C

F , (A1 ∨ A2) → B ⊢ C

F ,A2 → B ⊢ A1 → A2 F ,B ⊢ C

F , (A1 → A2) → B ⊢ C

Theorem

The sequent calculus G4ip is terminating, sound and complete for

intuitionistic propositional logic.

(Originally discovered by Vorob’ev 1952. Hudelmaier 1988 rediscovered

it. Dyckhoff 1992 popularized it as ‘LJT’. Troelsta & Schwichtenberg

1996 introduced the name ‘G4ip’.)
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A glimpse at Pitts’ table
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Pitts verified

In joint work with H. Férée (CPP 2023), we formalized Pitts’

construction and correctness proof in Coq, yielding a

correct-by-construction program that computes Ep and Ap.

https://hferee.github.io/UIML/

▶ Intricate properties of the proof calculus play a big role.

▶ We obtain a usable program (with optimizations to be done).

▶ Recently, with Férée, v.d. Giessen and Shillito (IJCAR 2024):

Extension of formalization to K, GL, and iSL.

Open problems:

▶ How to make it (even) more modular?

▶ How to tackle difficult cases (iGL)?
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The algebraic approach

Intuitionistic propositional logic is algebraically interpreted by

Heyting algebras: structures (H,∨,∧,⊥,⊤,→) satisfying the

axioms of a bounded distributive lattice and, for all a, b, c ∈ H,

a ∧ b ≤ c ⇐⇒ a ≤ b → c .

A Heyting category (aka logos) is a coherent category in which all

change of base functors have upper and lower adjoints.
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Pitts’ Theorem, semantically

Pitts’ theorem can be reformulated using Heyting algebras as:

Theorem (Pitts)

Any homomorphism between finitely generated free Heyting

algebras has both an upper and a lower adjoint.

A further consequence of this is:

Theorem (Pitts; Ghilardi & Zawadowski)

The opposite of the category HAfp of finitely presented Heyting

algebras is a Heyting category.
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A proof via sheaves

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof

of Pitts’ theorem.

They start from the observation that every

finitely presented Heyting algebra H can be faithfully represented

by a covariant presheaf

ΦH : HAfin −→ Set

defined as the restriction of Hom(H,−) to finite algebras.

G&Z notice that ΦH can also be seen as a contravariant sheaf on

the category Posfin of finite posets, giving a functor

Φ : HAfp −→ Sh(Posfin),

and characterize the image of Φ via a combinatorial condition (∗).
They prove Pitts’ Theorem by showing that the direct image (∃)
and universal image (∀) operations on sheaves preserve (∗).
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Quantifier elimination from uniform interpolation

Ghilardi and Zawadowski use Pitts’ theorem to prove:

Theorem. The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an extension

with quantifier elimination and the same universal theory.

One may identify the algebraic conditions needed for this, giving a

modular approach to model completions (Ghilardi & Zawadowski

2002; vG., Tsinakis, Metcalfe 2017; Metcalfe & Reggio 2023).

Further direction: Model completions for other varieties of

logic-related algebras (LTL, CTL, . . . , see Ghilardi & vG. 2016–. . . )
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Pitts via duality

A re-interpretation of the G&Z sheaf-theoretic proof.

Any bounded distributive lattice H can be described as a lattice of

compact-open subsets of a topological space X , based on the set

DL(H, 2)

of homomorphisms to the two-element lattice (Stone 1937).

Esakia (1974) derived from this a dual equivalence between

Heyting algebras and certain ordered compact spaces, now called

Esakia spaces. The finite part is Kripke semantics.
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applications to logic and theoretical computer science, 
this book equips graduate students and researchers 
with the theoretical background necessary for reading 
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methods with more algorithmic topics in finite model 
theory. Frequent exercises punctuate the text, with 
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theory for bounded distributive lattices, thereby laying 
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Esakia spaces

An Esakia space is a compact ordered space that is totally order

disconnected and such that ↑U is open for every open set U.

The main Esakia space of interest here is the canonical model,

X (p̄), over a finite set of variables p̄:

▶ points are prime theories in variables p̄;

▶ order is inclusion of theories;

▶ topology is generated by φ̂ := {x ∈ X (p̄) | φ ∈ x}.

A co-finitely presented Esakia space is one that is isomorphic to a

clopen up-set of X (p̄), for some finite p̄.
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An open mapping theorem

We give an open mapping theorem for Esakia spaces:

Theorem (vG. & Reggio 2018)

Every continuous monotone bounded map between co-finitely

presented Esakia spaces is open.

By Esakia duality, this implies the algebraic Pitts’ Theorem:

Corollary

Every homomorphism between finitely presented Heyting algebras

has a lower and upper adjoint.
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Definable bisimulation quantifiers

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation ↔ definability of bisimulation quantifiers.

A p̄-model is a poset (X ,≤), with a function v : p̄ → Up(X ,≤).

By induction, any formula φ gets a semantics JφKX ∈ Up(X ,≤).

If Epφ and Apφ are the uniform interpolants for φ, then

JEpφKX = {x ∈ X | ∃X ′, x ′ with (X ′, x ′) ∼p (X , x) and x ′ ∈ JφKX ′},

JApφKX = {x ∈ X | ∀X ′, x ′ with (X ′, x ′) ∼p (X , x), x ′ ∈ JφKX ′}.

Here, ∼p is the relation of bisimilarity up to p.

Thus, it suffices to show that the sets on the right are definable.
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Topological proof

To establish that the bisimulation quantifiers are definable, one can

use a layered version of bisimulation. In our work with Reggio, we

view this as a metric on the canonical model X (p, q̄):

d(x , y)
def
= 2−min{|φ|→ : exactly one of x and y is in JφK}.

Here, |φ|→ is the maximum depth of nestings of → in φ.

We then show that the projection πp : X (p, q̄) ↠ X (q̄) is open:

Lemma

For every n ∈ N, there exists R(n) >> n such that

B(π(x), 2−R(n)) ⊆ π[B(x , 2−n)].

The number R(n) gives a computable bound on the →-depth of

uniform interpolants of formulas of →-depth n.
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Outlook

▶ Uniform interpolation is a fertile ground for exploration:

proof-theoretic, semantic, and computational aspects.

There

is still plenty of work to do:

▶ Better understanding of connection between proof theory vs.

semantic proofs.

▶ Studying & improving complexity (theoretical & practical).

▶ Uniform interpolation for other logics; in particular, iGL.

▶ For logics without (uniform) interpolation, an interesting

computational problem: compute (uniform) interpolants when

they exist, if not, provide a witness that they cannot exist.
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Thank you!
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