#### Theory and Practice of Uniform Interpolation

Sam van Gool

IRIF, Université Paris Cité

WoLLIC, Bern, 13 June 2024

Overview

Uniform interpolation

#### Practice

Theory

Overview

Uniform interpolation

Practice

Theory

### Interpolation

Interpolation is the problem that asks, given a deduction

 $A \vdash B$ 

to find C such that

 $A \vdash C \vdash B$ 

and C only uses symbols that are in both A and B.

### Interpolation

Interpolation is the problem that asks, given a deduction

 $A \vdash B$ 

to find C such that

 $A \vdash C \vdash B$ 

and C only uses symbols that are in both A and B.

▶ What are A, B, C? Which symbols? What is  $\vdash$ ?

# Interpolation

Interpolation is the problem that asks, given a deduction

 $A \vdash B$ 

to find C such that

 $A \vdash C \vdash B$ 

and C only uses symbols that are in both A and B.

▶ What are A, B, C? Which symbols? What is  $\vdash$ ?

We will look at propositional logics, and take symbols to mean propositional variables.

### The classical case

Suppose that

$$A(p,q) \vdash B(p,r)$$

for propositional formulas A and B.

### The classical case

Suppose that

$$A(p,q) \vdash B(p,r)$$

for propositional formulas A and B. If  $\vdash$  is classical entailment, then the formula

$$C(p) := A(p, \bot) \lor A(p, \top)$$

is an interpolant:

$$A(p,q) \vdash C(p) \vdash B(p,r).$$

### The classical case

Suppose that

$$A(p,q) \vdash B(p,r)$$

for propositional formulas A and B. If  $\vdash$  is classical entailment, then the formula

$$C(p) := A(p, \bot) \lor A(p, \top)$$

is an interpolant:

$$A(p,q) \vdash C(p) \vdash B(p,r).$$

So is

$$C'(p) := B(p, \bot) \land B(p, \top).$$

### Uniform interpolants

Note that each of the interpolants

$$C(p) := A(p, \perp) \lor A(p, \top)$$
 and  $C'(p) := B(p, \perp) \land B(p, \top)$ 

only depends on one of the formulas in the entailment  $A \vdash B$ .

### Uniform interpolants

Note that each of the interpolants

$$C(p) := A(p, \perp) \lor A(p, \top)$$
 and  $C'(p) := B(p, \perp) \land B(p, \top)$ 

only depends on one of the formulas in the entailment  $A \vdash B$ .

These uniform interpolants encode propositional quantifiers:

$$C(p) \equiv \exists q. \ A(p,q) \text{ and } C'(p) \equiv \forall q. \ B(p,q) .$$

### Uniform interpolants

Note that each of the interpolants

$$C(p) := A(p, \perp) \lor A(p, \top)$$
 and  $C'(p) := B(p, \perp) \land B(p, \top)$ 

only depends on one of the formulas in the entailment  $A \vdash B$ .

These uniform interpolants encode propositional quantifiers:

$$C(p) \equiv \exists q. A(p,q) \text{ and } C'(p) \equiv \forall q. B(p,q).$$

The simple encoding works because classical logic is locally finite: If we fix a finite set of variables, then there are only finitely many equivalence classes of formulas with variables from this set.

# The intuitionistic case

Intuitionistic Propositional Logic is not locally finite. Even for just 1 variable, we have infinitely many non-equivalent formulas:

# The intuitionistic case

Intuitionistic Propositional Logic is not locally finite. Even for just 1 variable, we have infinitely many non-equivalent formulas:



# The intuitionistic case

Intuitionistic Propositional Logic is not locally finite. Even for just 1 variable, we have infinitely many non-equivalent formulas:



Still, we have:

#### Theorem (Pitts 1992)

There exists a computable encoding of propositional quantifiers in intuitionistic propositional logic.

# Detailed statement of Pitts' Theorem

For every propositional formula  $\varphi(\bar{p}, q)$ , one can compute q-free formulas

$$E_q(\varphi)$$
 and  $A_q(\varphi)$ ,

with variables in  $\bar{p}$ ,

# Detailed statement of Pitts' Theorem

For every propositional formula  $\varphi(\bar{p}, q)$ , one can compute *q*-free formulas

$$E_q(\varphi)$$
 and  $A_q(\varphi)$ ,

with variables in  $\bar{p}$ , such that, for any *q*-free formula  $\psi$ ,

if 
$$\varphi \vdash \psi$$
 then  $\varphi \vdash E_q \varphi \vdash \psi$ ,

# Detailed statement of Pitts' Theorem

For every propositional formula  $\varphi(\bar{p}, q)$ , one can compute q-free formulas

$$E_q(\varphi)$$
 and  $A_q(\varphi)$ ,

with variables in  $\bar{p}$ , such that, for any *q*-free formula  $\psi$ ,

$$\text{if } \varphi \vdash \psi \text{ then } \varphi \vdash \mathcal{E}_{\boldsymbol{q}} \varphi \vdash \psi ,$$

and

if 
$$\psi \vdash \varphi$$
 then  $\psi \vdash A_q \varphi \vdash \varphi$ ,

where  $\varphi \vdash \psi$  means intuitionistic entailment.

### Aside: Why Pitts proved his theorem

"Some ten or so years ago I tried to prove the negation of [the theorem] in connection with (...) the question of whether any Heyting algebra can appear as the algebra of truth-values of an elementary topos. I established that the free Heyting algebra on a countable infinity of generators does not so appear provided [the theorem] does not hold. It seemed likely to me (and to others to whom I posed the question) that a [formula]  $\varphi$  could be found for which  $A_{\mu}\varphi$ does not exist (although I could not find one!), thus settling the original question about toposes and Heyting algebras in the negative. That [the theorem] is true is quite a surprise to me. (...) It remains an open question whether every Heyting algebra can be the Lindenbaum algebra of a theory in intuitionistic higher order logic."

(Pitts, 1992) 7/25

# Intuitionistic propositional quantifiers

In IPC, the simple computation of  $E_q$  from the classical setting no longer works.

### Intuitionistic propositional quantifiers

In IPC, the simple computation of  $E_q$  from the classical setting no longer works. For example, when

$$\varphi = (\neg p \rightarrow q) \land (q \rightarrow r)$$

we have

$$\varphi[\perp/q] \equiv \neg \neg p, \quad \varphi[\top/q] \equiv r$$

but

$$\varphi \not\vdash \neg \neg p \lor r \; .$$

### Intuitionistic propositional quantifiers

In IPC, the simple computation of  $E_q$  from the classical setting no longer works. For example, when

$$\varphi = (\neg p \rightarrow q) \land (q \rightarrow r)$$

we have

$$\varphi[\perp/q] \equiv \neg \neg p, \quad \varphi[\top/q] \equiv r$$

but

$$\varphi \not\vdash \neg \neg p \lor r .$$

In this example, it turns out that  $E_q(\varphi)$  can be computed as

$$eg p 
ightarrow r$$
,

which is equivalent to  $\varphi[\neg p/q]$ .

Given a formula  $\varphi(ar{p}, q)$ , we have

$$arphi(ar{p},oldsymbol{q})dashigcolomigcolomigcolomigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowigcolowig$$

Given a formula  $\varphi(\bar{p}, q)$ , we have

$$\varphi(\bar{p},q) \vdash \bigwedge \{\psi(\bar{p}) \mid \varphi \vdash \psi\}.$$

The expression on the right is q-free, but not a formula.

Given a formula  $\varphi(\bar{p}, q)$ , we have

$$\varphi(\bar{p},q) \vdash \bigwedge \{\psi(\bar{p}) \mid \varphi \vdash \psi\}.$$

The expression on the right is q-free, but not a formula.

The idea is to replace it by

$$E_q(arphi) \stackrel{\mathrm{def}}{=} \bigwedge \mathcal{E}_q(arphi)$$

where  $\mathcal{E}_q(\varphi)$  is a finite basis for the set of consequences of  $\varphi$ .

Given a formula  $\varphi(\bar{p}, q)$ , we have

$$\varphi(\bar{\pmb{p}}, \pmb{q}) \vdash \bigwedge \{\psi(\bar{\pmb{p}}) \mid \varphi \vdash \psi\}.$$

The expression on the right is q-free, but not a formula.

The idea is to replace it by

 $E_q(\varphi) \stackrel{\mathrm{def}}{=} \bigwedge \mathcal{E}_q(\varphi)$ 

where  $\mathcal{E}_q(\varphi)$  is a finite basis for the set of consequences of  $\varphi$ . The computation of  $A_q(\varphi)$  is similar, using a disjunction of  $\mathcal{A}_q(\varphi)$ . Pitts' definition recurses on the shape of the formula A, using already computed sets  $\mathcal{E}_q(\varphi')$  and  $\mathcal{A}_q(\varphi')$  for smaller formulas  $\varphi'$ . Computing intuitionistic propositional quantifiers

Pitts constructs quantifiers, and proves correctness, by induction on proofs of  $A \vdash B$ .

The idea is that  $E_p(A)$  represents 'all possible consequences of A in a finite terminating proof search' (lemhoff 2019, v.d.Giessen 2023). Computing intuitionistic propositional quantifiers

Pitts constructs quantifiers, and proves correctness, by induction on proofs of  $A \vdash B$ .

The idea is that  $E_p(A)$  represents 'all possible consequences of A in a finite terminating proof search' (lemhoff 2019, v.d.Giessen 2023).

► What proof calculus to use?

# A terminating sequent calculus

Gentzen calculus LJ has contraction, and the rule:

$$\frac{ \mbox{ } \Gamma, \varphi_1 \rightarrow \varphi_2 \vdash \varphi_1 \mbox{ } \Gamma, \varphi_2 \vdash \psi }{ \mbox{ } \Gamma, \varphi_1 \rightarrow \varphi_2 \vdash \psi }$$

which make proof search not obviously terminating.

# A terminating sequent calculus

Gentzen calculus LJ has contraction, and the rule:

$$\frac{\mathsf{\Gamma},\varphi_1 \to \varphi_2 \vdash \varphi_1 \qquad \mathsf{\Gamma},\varphi_2 \vdash \psi}{\mathsf{\Gamma},\varphi_1 \to \varphi_2 \vdash \psi}$$

which make proof search not obviously terminating. Classical solution: **G4ip** uses multisets as sequents, and replaces the  $\rightarrow$ -left rule by a finer case analysis on  $\varphi_1$ .

Replace  $\rightarrow\mbox{-left}$  rule by the following four rules:

Replace  $\rightarrow\mbox{-left}$  rule by the following four rules:

$$\frac{\mathcal{F}, p, A \vdash C}{\mathcal{F}, p, p \to A \vdash C}$$

Replace  $\rightarrow$ -left rule by the following four rules:

$$\frac{\mathcal{F}, p, A \vdash C}{\mathcal{F}, p, p \to A \vdash C} \qquad \qquad \frac{\mathcal{F},}{\mathcal{F},}$$

$$\begin{array}{c} \mathcal{F}, \mathcal{A}_1 \rightarrow (\mathcal{A}_2 \rightarrow \mathcal{B}) \vdash \mathcal{C} \\ \\ \mathcal{F}, (\mathcal{A}_1 \wedge \mathcal{A}_2) \rightarrow \mathcal{B} \vdash \mathcal{C} \end{array}$$

Replace  $\rightarrow$ -left rule by the following four rules:

 $\begin{array}{c} \mathcal{F}, p, A \vdash C \\ \hline \mathcal{F}, p, p \rightarrow A \vdash C \\ \hline \mathcal{F}, A_1 \rightarrow B, A_2 \rightarrow B \vdash C \\ \hline \mathcal{F}, (A_1 \lor A_2) \rightarrow B \vdash C \end{array}$ 

$$\frac{\mathcal{F}, A_1 \to (A_2 \to B) \vdash C}{\mathcal{F}, (A_1 \land A_2) \to B \vdash C}$$

Replace  $\rightarrow\mbox{-left}$  rule by the following four rules:

$$\begin{array}{c} \mathcal{F}, p, A \vdash C \\ \hline \mathcal{F}, p, p \to A \vdash C \end{array} & \begin{array}{c} \mathcal{F}, A_1 \to (A_2 \to B) \vdash C \\ \hline \mathcal{F}, (A_1 \land A_2) \to B \vdash C \end{array} \\ \hline \mathcal{F}, (A_1 \lor A_2) \to B \vdash C \end{array} & \begin{array}{c} \mathcal{F}, A_2 \to B \vdash A_1 \to A_2 & \mathcal{F}, B \vdash C \\ \hline \mathcal{F}, (A_1 \lor A_2) \to B \vdash C \end{array} \end{array}$$

Replace  $\rightarrow\mbox{-left}$  rule by the following four rules:

$$\begin{array}{c} \mathcal{F}, p, A \vdash C \\ \hline \mathcal{F}, p, p \to A \vdash C \end{array} & \begin{array}{c} \mathcal{F}, A_1 \to (A_2 \to B) \vdash C \\ \hline \mathcal{F}, (A_1 \land A_2) \to B \vdash C \end{array} \\ \hline \mathcal{F}, (A_1 \lor A_2) \to B \vdash C \end{array} & \begin{array}{c} \mathcal{F}, A_2 \to B \vdash A_1 \to A_2 & \mathcal{F}, B \vdash C \\ \hline \mathcal{F}, (A_1 \lor A_2) \to B \vdash C \end{array} \end{array}$$
## G4ip

Replace  $\rightarrow$ -left rule by the following four rules:

$$\begin{array}{c} \mathcal{F}, p, A \vdash C \\ \hline \mathcal{F}, p, p \to A \vdash C \end{array} & \begin{array}{c} \mathcal{F}, A_1 \to (A_2 \to B) \vdash C \\ \hline \mathcal{F}, (A_1 \land A_2) \to B \vdash C \end{array} \\ \hline \mathcal{F}, (A_1 \lor A_2) \to B \vdash C \end{array} & \begin{array}{c} \mathcal{F}, A_2 \to B \vdash A_1 \to A_2 & \mathcal{F}, B \vdash C \\ \hline \mathcal{F}, (A_1 \to A_2) \to B \vdash C \end{array} \end{array}$$

#### Theorem

The sequent calculus **G4ip** is terminating, sound and complete for intuitionistic propositional logic.

## G4ip

Replace  $\rightarrow$ -left rule by the following four rules:

$$\begin{array}{c} \mathcal{F}, p, A \vdash C \\ \hline \mathcal{F}, p, p \to A \vdash C \end{array} & \begin{array}{c} \mathcal{F}, A_1 \to (A_2 \to B) \vdash C \\ \hline \mathcal{F}, (A_1 \land A_2) \to B \vdash C \end{array} \\ \hline \mathcal{F}, (A_1 \lor A_2) \to B \vdash C \end{array} & \begin{array}{c} \mathcal{F}, A_2 \to B \vdash A_1 \to A_2 & \mathcal{F}, B \vdash C \\ \hline \mathcal{F}, (A_1 \to A_2) \to B \vdash C \end{array} \end{array}$$

#### Theorem

The sequent calculus **G4ip** is terminating, sound and complete for intuitionistic propositional logic.

(Originally discovered by Vorob'ev 1952. Hudelmaier 1988 rediscovered it. Dyckhoff 1992 popularized it as '**LJT**'. Troelsta & Schwichtenberg 1996 introduced the name '**G4ip**'.)

# A glimpse at Pitts' table

|                 | $\Delta$ matches:                                              | $\mathcal{E}(\Delta)$ contains:                                                                                                                                |
|-----------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_1$           | $\Delta' \bullet q$                                            | $E(\Delta') \wedge q$                                                                                                                                          |
| $E_4$           | $\Delta' \bullet (q \to \delta)$                               | $q \to E(\Delta' \bullet \delta)$                                                                                                                              |
| $E_5$           | $\Delta^{\prime\prime} \bullet p \bullet (p \to \delta)$       | $E(\Delta'' \bullet p \bullet \delta)$                                                                                                                         |
| $E_6$           | $\Delta' \bullet (\delta_1 \wedge \delta_2) \to \delta_3$      | $E(\Delta' \bullet (\delta_1 \to (\delta_2 \to \delta_3)))$                                                                                                    |
| $E_8$           | $\Delta' \bullet ((\delta_1 \to \delta_2) \to \delta_3)$       | $(E(\Delta' \bullet (\delta_2 \to \delta_3)) \to A(\Delta' \bullet (\delta_2 \to \delta_3), \delta_1 \to \delta_2)) \to E(\Delta' \bullet \delta_3)$           |
|                 | $\Delta, \phi$ matches:                                        | $\mathcal{A}(\Delta, \phi)$ contains:                                                                                                                          |
| $A_3$           | $\Delta' \bullet \delta_1 \lor \delta_2, \phi$                 | $(E(\Delta' \bullet \delta_1) \to A(\Delta' \bullet \delta_1, \phi)) \land (E(\Delta' \bullet \delta_2) \to A(\Delta' \bullet \delta_2, \phi))$                |
| $A_7$           | $\Delta' \bullet (\delta_1 \lor \delta_2) \to \delta_3, \phi$  | $A(\Delta' \bullet (\delta_1 \to \delta_3) \bullet (\delta_2 \to \delta_3), \phi)$                                                                             |
| $A_8$           | $\Delta' \bullet ((\delta_1 \to \delta_2) \to \delta_3), \phi$ | $(E(\Delta' \bullet (\delta_2 \to \delta_3)) \to A(\Delta' \bullet (\delta_2 \to \delta_3), (\delta_1 \to \delta_2))) \land A(\Delta' \bullet \delta_3, \phi)$ |
| A <sub>11</sub> | $\Delta,\phi_1\wedge\phi_2$                                    | $A(\Delta,\phi_1)\wedge A(\Delta,\phi_2)$                                                                                                                      |
| $A_{12}$        | $\Delta, \phi_1 \lor \phi_2$                                   | $A(\Delta,\phi_1) \lor A(\Delta,\phi_2)$                                                                                                                       |
| A <sub>13</sub> | $\Delta, \phi_1 \rightarrow \phi_2$                            | $E(\Delta \bullet \phi_1, \phi_2) \to A(\Delta \bullet \phi_1, \phi_2)$                                                                                        |

**Table 1.** Excerpt of Pitts' definitions of  $\mathcal{E}(\Delta)$  and  $\mathcal{A}(\Delta, \phi)$ , with respect to a fixed variable *p*.

Overview

Uniform interpolation

#### Practice

Theory

## Pitts verified

In joint work with H. Férée (CPP 2023), we formalized Pitts' construction and correctness proof in Coq, yielding a correct-by-construction program that computes  $E_p$  and  $A_p$ .

https://hferee.github.io/UIML/

## Pitts verified

In joint work with H. Férée (CPP 2023), we formalized Pitts' construction and correctness proof in Coq, yielding a correct-by-construction program that computes  $E_p$  and  $A_p$ .

https://hferee.github.io/UIML/

- Intricate properties of the proof calculus play a big role.
- We obtain a usable program (with optimizations to be done).
- Recently, with Férée, v.d. Giessen and Shillito (IJCAR 2024): Extension of formalization to K, GL, and iSL.

## Pitts verified

In joint work with H. Férée (CPP 2023), we formalized Pitts' construction and correctness proof in Coq, yielding a correct-by-construction program that computes  $E_p$  and  $A_p$ .

https://hferee.github.io/UIML/

- Intricate properties of the proof calculus play a big role.
- We obtain a usable program (with optimizations to be done).
- Recently, with Férée, v.d. Giessen and Shillito (IJCAR 2024): Extension of formalization to K, GL, and iSL.
   Open problems:
- How to make it (even) more modular?
- How to tackle difficult cases (iGL)?

Overview

Uniform interpolation

Practice

Theory

## The algebraic approach

Intuitionistic propositional logic is algebraically interpreted by Heyting algebras: structures  $(H, \lor, \land, \bot, \top, \rightarrow)$  satisfying the axioms of a bounded distributive lattice and, for all  $a, b, c \in H$ ,

 $a \wedge b \leq c \iff a \leq b \rightarrow c$ .

## The algebraic approach

Intuitionistic propositional logic is algebraically interpreted by Heyting algebras: structures  $(H, \lor, \land, \bot, \top, \rightarrow)$  satisfying the axioms of a bounded distributive lattice and, for all  $a, b, c \in H$ ,

$$a \wedge b \leq c \iff a \leq b \rightarrow c$$
.

A Heyting category (aka logos) is a coherent category in which all change of base functors have upper and lower adjoints.

# Pitts' Theorem, semantically

Pitts' theorem can be reformulated using Heyting algebras as:

Theorem (Pitts)

Any homomorphism between finitely generated free Heyting algebras has both an upper and a lower adjoint.

# Pitts' Theorem, semantically

Pitts' theorem can be reformulated using Heyting algebras as:

#### Theorem (Pitts)

Any homomorphism between finitely generated free Heyting algebras has both an upper and a lower adjoint.

A further consequence of this is:

#### Theorem (Pitts; Ghilardi & Zawadowski)

The opposite of the category  $HA_{\rm fp}$  of finitely presented Heyting algebras is a Heyting category.

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof of Pitts' theorem.

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof of Pitts' theorem. They start from the observation that every finitely presented Heyting algebra H can be faithfully represented by a covariant presheaf

$$\Phi_H \colon \mathsf{HA}_{\mathrm{fin}} \longrightarrow \mathsf{Set}$$

defined as the restriction of Hom(H, -) to finite algebras.

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof of Pitts' theorem. They start from the observation that every finitely presented Heyting algebra H can be faithfully represented by a covariant presheaf

$$\Phi_H \colon \mathsf{HA}_{\mathrm{fin}} \longrightarrow \mathsf{Set}$$

defined as the restriction of Hom(H, -) to finite algebras. G&Z notice that  $\Phi_H$  can also be seen as a contravariant sheaf on the category **Pos**<sub>fin</sub> of finite posets, giving a functor

$$\Phi \colon \mathsf{HA}_{\mathrm{fp}} \longrightarrow \mathrm{Sh}(\mathsf{Pos}_{\mathrm{fin}}),$$

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof of Pitts' theorem. They start from the observation that every finitely presented Heyting algebra H can be faithfully represented by a covariant presheaf

$$\Phi_H \colon \mathsf{HA}_{\mathrm{fin}} \longrightarrow \mathsf{Set}$$

defined as the restriction of Hom(H, -) to finite algebras. G&Z notice that  $\Phi_H$  can also be seen as a contravariant sheaf on the category **Pos**<sub>fin</sub> of finite posets, giving a functor

$$\Phi \colon \mathsf{HA}_{\mathrm{fp}} \longrightarrow \mathrm{Sh}(\mathsf{Pos}_{\mathrm{fin}}),$$

and characterize the image of  $\Phi$  via a combinatorial condition (\*).

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof of Pitts' theorem. They start from the observation that every finitely presented Heyting algebra H can be faithfully represented by a covariant presheaf

$$\Phi_H \colon \mathsf{HA}_{\mathrm{fin}} \longrightarrow \mathsf{Set}$$

defined as the restriction of Hom(H, -) to finite algebras. G&Z notice that  $\Phi_H$  can also be seen as a contravariant sheaf on the category **Pos**<sub>fin</sub> of finite posets, giving a functor

$$\Phi \colon \mathsf{HA}_{\mathrm{fp}} \longrightarrow \mathrm{Sh}(\mathsf{Pos}_{\mathrm{fin}}),$$

and characterize the image of  $\Phi$  via a combinatorial condition (\*). They prove Pitts' Theorem by showing that the direct image ( $\exists$ ) and universal image ( $\forall$ ) operations on sheaves preserve (\*).

Ghilardi and Zawadowski use Pitts' theorem to prove: **Theorem.** The theory of Heyting algebras has a model completion.

Ghilardi and Zawadowski use Pitts' theorem to prove: **Theorem.** The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an extension with quantifier elimination and the same universal theory.

Ghilardi and Zawadowski use Pitts' theorem to prove: **Theorem.** The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an extension with quantifier elimination and the same universal theory.

One may identify the algebraic conditions needed for this, giving a modular approach to model completions (Ghilardi & Zawadowski 2002; vG., Tsinakis, Metcalfe 2017; Metcalfe & Reggio 2023).

Ghilardi and Zawadowski use Pitts' theorem to prove: **Theorem.** The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an extension with quantifier elimination and the same universal theory.

One may identify the algebraic conditions needed for this, giving a modular approach to model completions (Ghilardi & Zawadowski 2002; vG., Tsinakis, Metcalfe 2017; Metcalfe & Reggio 2023).

Further direction: Model completions for other varieties of logic-related algebras (LTL, CTL, ..., see Ghilardi & vG. 2016-...)

## Pitts via duality

A re-interpretation of the G&Z sheaf-theoretic proof.

## Pitts via duality

A re-interpretation of the G&Z sheaf-theoretic proof.

Any bounded distributive lattice H can be described as a lattice of compact-open subsets of a topological space X, based on the set

### **DL**(*H*, 2)

of homomorphisms to the two-element lattice (Stone 1937).

## Pitts via duality

A re-interpretation of the G&Z sheaf-theoretic proof.

Any bounded distributive lattice H can be described as a lattice of compact-open subsets of a topological space X, based on the set

## **DL**(*H*, 2)

of homomorphisms to the two-element lattice (Stone 1937).

Esakia (1974) derived from this a dual equivalence between Heyting algebras and certain *ordered compact spaces*, now called Esakia spaces. The finite part is Kripke semantics.

# Advertising break



Now in print!

20% discount flyer available by e-mail from the authors (vangool@irif.fr)

M. Gehrke & SvG: *Topological Duality for Distributive Lattices: Theory and Applications*, Cambridge University Press, 369pp (2024).



An Esakia space is a compact ordered space that is totally order disconnected and such that  $\uparrow U$  is open for every open set U.

#### Esakia spaces

An Esakia space is a compact ordered space that is totally order disconnected and such that  $\uparrow U$  is open for every open set U.

The main Esakia space of interest here is the canonical model,  $X(\bar{p})$ , over a finite set of variables  $\bar{p}$ :

- points are prime theories in variables  $\bar{p}$ ;
- order is inclusion of theories;
- topology is generated by  $\widehat{\varphi} := \{x \in X(\overline{p}) \mid \varphi \in x\}.$

#### Esakia spaces

An Esakia space is a compact ordered space that is totally order disconnected and such that  $\uparrow U$  is open for every open set U.

The main Esakia space of interest here is the canonical model,  $X(\bar{p})$ , over a finite set of variables  $\bar{p}$ :

- points are prime theories in variables  $\bar{p}$ ;
- order is inclusion of theories;
- topology is generated by  $\widehat{\varphi} := \{x \in X(\overline{p}) \mid \varphi \in x\}.$

A co-finitely presented Esakia space is one that is isomorphic to a clopen up-set of  $X(\bar{p})$ , for some finite  $\bar{p}$ .

# An open mapping theorem

We give an open mapping theorem for Esakia spaces:

Theorem (vG. & Reggio 2018)

Every continuous monotone bounded map between co-finitely presented Esakia spaces is open.

# An open mapping theorem

We give an open mapping theorem for Esakia spaces:

Theorem (vG. & Reggio 2018)

Every continuous monotone bounded map between co-finitely presented Esakia spaces is open.

By Esakia duality, this implies the algebraic Pitts' Theorem: Corollary

Every homomorphism between finitely presented Heyting algebras has a lower and upper adjoint.

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation  $\leftrightarrow$  definability of bisimulation quantifiers.

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation  $\leftrightarrow$  definability of bisimulation quantifiers.

A  $\bar{p}$ -model is a poset  $(X, \leq)$ , with a function  $v : \bar{p} \to Up(X, \leq)$ . By induction, any formula  $\varphi$  gets a semantics  $[\![\varphi]\!]_X \in Up(X, \leq)$ .

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation  $\leftrightarrow$  definability of bisimulation quantifiers.

A  $\bar{p}$ -model is a poset  $(X, \leq)$ , with a function  $v : \bar{p} \to \mathrm{Up}(X, \leq)$ . By induction, any formula  $\varphi$  gets a semantics  $[\![\varphi]\!]_X \in \mathrm{Up}(X, \leq)$ . If  $E_p \varphi$  and  $A_p \varphi$  are the uniform interpolants for  $\varphi$ , then

$$\llbracket E_p \varphi \rrbracket_X = \{ x \in X \mid \exists X', x' \text{ with } (X', x') \sim_p (X, x) \text{ and } x' \in \llbracket \varphi \rrbracket_{X'} \},$$

$$\llbracket A_p \varphi \rrbracket_X = \{ x \in X \mid \forall X', x' \text{ with } (X', x') \sim_p (X, x), \ x' \in \llbracket \varphi \rrbracket_{X'} \}.$$

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation  $\leftrightarrow$  definability of bisimulation quantifiers.

A  $\bar{p}$ -model is a poset  $(X, \leq)$ , with a function  $v : \bar{p} \to \mathrm{Up}(X, \leq)$ . By induction, any formula  $\varphi$  gets a semantics  $[\![\varphi]\!]_X \in \mathrm{Up}(X, \leq)$ . If  $E_p \varphi$  and  $A_p \varphi$  are the uniform interpolants for  $\varphi$ , then

$$\llbracket E_p \varphi \rrbracket_X = \{ x \in X \mid \exists X', x' \text{ with } (X', x') \sim_p (X, x) \text{ and } x' \in \llbracket \varphi \rrbracket_{X'} \},$$

$$\llbracket A_{p}\varphi \rrbracket_{X} = \{x \in X \mid \forall X', x' \text{ with } (X', x') \sim_{p} (X, x), \ x' \in \llbracket \varphi \rrbracket_{X'} \}.$$

Here,  $\sim_p$  is the relation of bisimilarity up to p.

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation  $\leftrightarrow$  definability of bisimulation quantifiers.

A  $\bar{p}$ -model is a poset  $(X, \leq)$ , with a function  $v : \bar{p} \to \mathrm{Up}(X, \leq)$ . By induction, any formula  $\varphi$  gets a semantics  $[\![\varphi]\!]_X \in \mathrm{Up}(X, \leq)$ . If  $E_p \varphi$  and  $A_p \varphi$  are the uniform interpolants for  $\varphi$ , then

$$\llbracket E_p \varphi \rrbracket_X = \{ x \in X \mid \exists X', x' \text{ with } (X', x') \sim_p (X, x) \text{ and } x' \in \llbracket \varphi \rrbracket_{X'} \},$$

$$\llbracket A_{p}\varphi \rrbracket_{X} = \{x \in X \mid \forall X', x' \text{ with } (X', x') \sim_{p} (X, x), \ x' \in \llbracket \varphi \rrbracket_{X'} \}.$$

Here,  $\sim_p$  is the relation of bisimilarity up to p. Thus, it suffices to show that the sets on the right are definable.

## Topological proof

To establish that the bisimulation quantifiers are definable, one can use a layered version of bisimulation. In our work with Reggio, we view this as a metric on the canonical model  $X(p, \bar{q})$ :

$$d(x,y) \stackrel{\text{def}}{=} 2^{-\min\{|\varphi|_{\rightarrow} : \text{ exactly one of } x \text{ and } y \text{ is in } \llbracket \varphi \rrbracket\}}.$$

Here,  $|\varphi|_{
ightarrow}$  is the maximum depth of nestings of ightarrow in  $\varphi$ .
### Topological proof

To establish that the bisimulation quantifiers are definable, one can use a layered version of bisimulation. In our work with Reggio, we view this as a metric on the canonical model  $X(p, \bar{q})$ :

$$d(x,y) \stackrel{\mathrm{def}}{=} 2^{-\min\{|\varphi|_{
ightarrow} : \text{ exactly one of } x \text{ and } y \text{ is in } \llbracket \varphi \rrbracket \}}$$

Here,  $|\varphi|_{\rightarrow}$  is the maximum depth of nestings of  $\rightarrow$  in  $\varphi$ . We then show that the projection  $\pi_p \colon X(p, \bar{q}) \twoheadrightarrow X(\bar{q})$  is open:

# Topological proof

To establish that the bisimulation quantifiers are definable, one can use a layered version of bisimulation. In our work with Reggio, we view this as a metric on the canonical model  $X(p, \bar{q})$ :

$$d(x,y) \stackrel{\mathrm{def}}{=} 2^{-\min\{|arphi|_{
ightarrow}: ext{ exactly one of } x ext{ and } y ext{ is in } \llbracket arphi 
rbrace\}.$$

Here,  $|\varphi|_{\rightarrow}$  is the maximum depth of nestings of  $\rightarrow$  in  $\varphi$ . We then show that the projection  $\pi_p \colon X(p, \bar{q}) \twoheadrightarrow X(\bar{q})$  is open:

#### Lemma

For every  $n \in \mathbb{N}$ , there exists  $R(n) \gg n$  such that  $B(\pi(x), 2^{-R(n)}) \subseteq \pi[B(x, 2^{-n})].$ 

The number R(n) gives a computable bound on the  $\rightarrow$ -depth of uniform interpolants of formulas of  $\rightarrow$ -depth n.

 Uniform interpolation is a fertile ground for exploration: proof-theoretic, semantic, and computational aspects.

- Uniform interpolation is a fertile ground for exploration: proof-theoretic, semantic, and computational aspects. There is still plenty of work to do:
- Better understanding of connection between proof theory vs. semantic proofs.

- Uniform interpolation is a fertile ground for exploration: proof-theoretic, semantic, and computational aspects. There is still plenty of work to do:
- Better understanding of connection between proof theory vs. semantic proofs.
- Studying & improving complexity (theoretical & practical).

- Uniform interpolation is a fertile ground for exploration: proof-theoretic, semantic, and computational aspects. There is still plenty of work to do:
- Better understanding of connection between proof theory vs. semantic proofs.
- Studying & improving complexity (theoretical & practical).
- Uniform interpolation for other logics; in particular, iGL.

- Uniform interpolation is a fertile ground for exploration: proof-theoretic, semantic, and computational aspects. There is still plenty of work to do:
- Better understanding of connection between proof theory vs. semantic proofs.
- Studying & improving complexity (theoretical & practical).
- ▶ Uniform interpolation for other logics; in particular, **iGL**.
- For logics without (uniform) interpolation, an interesting computational problem: compute (uniform) interpolants when they exist, if not, provide a witness that they cannot exist.

Thank you!