
Theory and Practice of Uniform Interpolation

Sam van Gool

IRIF, Université Paris Cité

WoLLIC, Bern, 13 June 2024



Overview

Uniform interpolation

Practice

Theory

1 / 25



Overview

Uniform interpolation

Practice

Theory

1 / 25



Interpolation

Interpolation is the problem that asks, given a deduction

A ⊢ B

to find C such that

A ⊢ C ⊢ B

and C only uses symbols that are in both A and B.

▶ What are A,B,C? Which symbols? What is ⊢?

We will look at propositional logics, and take symbols to mean

propositional variables.

2 / 25



Interpolation

Interpolation is the problem that asks, given a deduction

A ⊢ B

to find C such that

A ⊢ C ⊢ B

and C only uses symbols that are in both A and B.

▶ What are A,B,C? Which symbols? What is ⊢?

We will look at propositional logics, and take symbols to mean

propositional variables.

2 / 25



Interpolation

Interpolation is the problem that asks, given a deduction

A ⊢ B

to find C such that

A ⊢ C ⊢ B

and C only uses symbols that are in both A and B.

▶ What are A,B,C? Which symbols? What is ⊢?

We will look at propositional logics, and take symbols to mean

propositional variables.

2 / 25



The classical case

Suppose that

A(p, q) ⊢ B(p, r)

for propositional formulas A and B.

If ⊢ is classical entailment, then the formula

C (p) := A(p,⊥) ∨ A(p,⊤)

is an interpolant:

A(p, q) ⊢ C (p) ⊢ B(p, r).

So is

C ′(p) := B(p,⊥) ∧ B(p,⊤).

3 / 25



The classical case

Suppose that

A(p, q) ⊢ B(p, r)

for propositional formulas A and B.

If ⊢ is classical entailment, then the formula

C (p) := A(p,⊥) ∨ A(p,⊤)

is an interpolant:

A(p, q) ⊢ C (p) ⊢ B(p, r).

So is

C ′(p) := B(p,⊥) ∧ B(p,⊤).

3 / 25



The classical case

Suppose that

A(p, q) ⊢ B(p, r)

for propositional formulas A and B.

If ⊢ is classical entailment, then the formula

C (p) := A(p,⊥) ∨ A(p,⊤)

is an interpolant:

A(p, q) ⊢ C (p) ⊢ B(p, r).

So is

C ′(p) := B(p,⊥) ∧ B(p,⊤).

3 / 25



Uniform interpolants

Note that each of the interpolants

C (p) := A(p,⊥) ∨ A(p,⊤) and C ′(p) := B(p,⊥) ∧ B(p,⊤)

only depends on one of the formulas in the entailment A ⊢ B.

These uniform interpolants encode propositional quantifiers:

C (p) ≡ ∃q. A(p, q) and C ′(p) ≡ ∀q. B(p, q) .

The simple encoding works because classical logic is locally finite:

If we fix a finite set of variables, then there are only finitely many

equivalence classes of formulas with variables from this set.

4 / 25



Uniform interpolants

Note that each of the interpolants

C (p) := A(p,⊥) ∨ A(p,⊤) and C ′(p) := B(p,⊥) ∧ B(p,⊤)

only depends on one of the formulas in the entailment A ⊢ B.

These uniform interpolants encode propositional quantifiers:

C (p) ≡ ∃q. A(p, q) and C ′(p) ≡ ∀q. B(p, q) .

The simple encoding works because classical logic is locally finite:

If we fix a finite set of variables, then there are only finitely many

equivalence classes of formulas with variables from this set.

4 / 25



Uniform interpolants

Note that each of the interpolants

C (p) := A(p,⊥) ∨ A(p,⊤) and C ′(p) := B(p,⊥) ∧ B(p,⊤)

only depends on one of the formulas in the entailment A ⊢ B.

These uniform interpolants encode propositional quantifiers:

C (p) ≡ ∃q. A(p, q) and C ′(p) ≡ ∀q. B(p, q) .

The simple encoding works because classical logic is locally finite:

If we fix a finite set of variables, then there are only finitely many

equivalence classes of formulas with variables from this set.

4 / 25



The intuitionistic case

Intuitionistic Propositional Logic

is not locally finite.

Even for just 1 variable, we have

infinitely many non-equivalent

formulas:

⊥

p¬p

p ∨ ¬p ¬¬p

¬p ∨ ¬¬p¬¬p → p

...

Still, we have:

Theorem (Pitts 1992)

There exists a computable encoding of propositional quantifiers in

intuitionistic propositional logic.

5 / 25



The intuitionistic case

Intuitionistic Propositional Logic

is not locally finite.

Even for just 1 variable, we have

infinitely many non-equivalent

formulas:

⊥

p¬p

p ∨ ¬p ¬¬p

¬p ∨ ¬¬p¬¬p → p

...

Still, we have:

Theorem (Pitts 1992)

There exists a computable encoding of propositional quantifiers in

intuitionistic propositional logic.

5 / 25



The intuitionistic case

Intuitionistic Propositional Logic

is not locally finite.

Even for just 1 variable, we have

infinitely many non-equivalent

formulas:

⊥

p¬p

p ∨ ¬p ¬¬p

¬p ∨ ¬¬p¬¬p → p

...

Still, we have:

Theorem (Pitts 1992)

There exists a computable encoding of propositional quantifiers in

intuitionistic propositional logic.

5 / 25



Detailed statement of Pitts’ Theorem

For every propositional formula φ(p̄, q), one can compute q-free

formulas

Eq(φ) and Aq(φ),

with variables in p̄,

such that, for any q-free formula ψ,

if φ ⊢ ψ then φ ⊢ Eqφ ⊢ ψ ,

and

if ψ ⊢ φ then ψ ⊢ Aqφ ⊢ φ ,

where φ ⊢ ψ means intuitionistic entailment.

6 / 25



Detailed statement of Pitts’ Theorem

For every propositional formula φ(p̄, q), one can compute q-free

formulas

Eq(φ) and Aq(φ),

with variables in p̄, such that, for any q-free formula ψ,

if φ ⊢ ψ then φ ⊢ Eqφ ⊢ ψ ,

and

if ψ ⊢ φ then ψ ⊢ Aqφ ⊢ φ ,

where φ ⊢ ψ means intuitionistic entailment.

6 / 25



Detailed statement of Pitts’ Theorem

For every propositional formula φ(p̄, q), one can compute q-free

formulas

Eq(φ) and Aq(φ),

with variables in p̄, such that, for any q-free formula ψ,

if φ ⊢ ψ then φ ⊢ Eqφ ⊢ ψ ,

and

if ψ ⊢ φ then ψ ⊢ Aqφ ⊢ φ ,

where φ ⊢ ψ means intuitionistic entailment.

6 / 25



Aside: Why Pitts proved his theorem
“Some ten or so years ago I tried to prove the negation

of [the theorem] in connection with (...) the question of

whether any Heyting algebra can appear as the algebra of

truth-values of an elementary topos. I established that the

free Heyting algebra on a countable infinity of generators

does not so appear provided [the theorem] does not hold.

It seemed likely to me (and to others to whom I posed the

question) that a [formula] φ could be found for which Apφ

does not exist (although I could not find one!), thus settling

the original question about toposes and Heyting algebras in

the negative. That [the theorem] is true is quite a surprise

to me. (...) It remains an open question whether every

Heyting algebra can be the Lindenbaum algebra of a theory

in intuitionistic higher order logic.”

(Pitts, 1992)
7 / 25



Intuitionistic propositional quantifiers

In IPC, the simple computation of Eq from the classical setting no

longer works.

For example, when

φ = (¬p → q) ∧ (q → r)

we have

φ[⊥/q] ≡ ¬¬p, φ[⊤/q] ≡ r

but

φ ̸⊢ ¬¬p ∨ r .

In this example, it turns out that Eq(φ) can be computed as

¬p → r ,

which is equivalent to φ[¬p/q].

8 / 25



Intuitionistic propositional quantifiers

In IPC, the simple computation of Eq from the classical setting no

longer works. For example, when

φ = (¬p → q) ∧ (q → r)

we have

φ[⊥/q] ≡ ¬¬p, φ[⊤/q] ≡ r

but

φ ̸⊢ ¬¬p ∨ r .

In this example, it turns out that Eq(φ) can be computed as

¬p → r ,

which is equivalent to φ[¬p/q].

8 / 25



Intuitionistic propositional quantifiers

In IPC, the simple computation of Eq from the classical setting no

longer works. For example, when

φ = (¬p → q) ∧ (q → r)

we have

φ[⊥/q] ≡ ¬¬p, φ[⊤/q] ≡ r

but

φ ̸⊢ ¬¬p ∨ r .

In this example, it turns out that Eq(φ) can be computed as

¬p → r ,

which is equivalent to φ[¬p/q].
8 / 25



A finite basis for interpolants

Given a formula φ(p̄, q), we have

φ(p̄, q) ⊢
∧

{ψ(p̄) | φ ⊢ ψ}.

The expression on the right is q-free, but not a formula.

The idea is to replace it by

Eq(φ)
def
=

∧
Eq(φ)

where Eq(φ) is a finite basis for the set of consequences of φ.

The computation of Aq(φ) is similar, using a disjunction of Aq(φ).

Pitts’ definition recurses on the shape of the formula A, using

already computed sets Eq(φ′) and Aq(φ
′) for smaller formulas φ′.

9 / 25



A finite basis for interpolants

Given a formula φ(p̄, q), we have

φ(p̄, q) ⊢
∧

{ψ(p̄) | φ ⊢ ψ}.

The expression on the right is q-free, but not a formula.

The idea is to replace it by

Eq(φ)
def
=

∧
Eq(φ)

where Eq(φ) is a finite basis for the set of consequences of φ.

The computation of Aq(φ) is similar, using a disjunction of Aq(φ).

Pitts’ definition recurses on the shape of the formula A, using

already computed sets Eq(φ′) and Aq(φ
′) for smaller formulas φ′.

9 / 25



A finite basis for interpolants

Given a formula φ(p̄, q), we have

φ(p̄, q) ⊢
∧

{ψ(p̄) | φ ⊢ ψ}.

The expression on the right is q-free, but not a formula.

The idea is to replace it by

Eq(φ)
def
=

∧
Eq(φ)

where Eq(φ) is a finite basis for the set of consequences of φ.

The computation of Aq(φ) is similar, using a disjunction of Aq(φ).

Pitts’ definition recurses on the shape of the formula A, using

already computed sets Eq(φ′) and Aq(φ
′) for smaller formulas φ′.

9 / 25



A finite basis for interpolants

Given a formula φ(p̄, q), we have

φ(p̄, q) ⊢
∧

{ψ(p̄) | φ ⊢ ψ}.

The expression on the right is q-free, but not a formula.

The idea is to replace it by

Eq(φ)
def
=

∧
Eq(φ)

where Eq(φ) is a finite basis for the set of consequences of φ.

The computation of Aq(φ) is similar, using a disjunction of Aq(φ).

Pitts’ definition recurses on the shape of the formula A, using

already computed sets Eq(φ′) and Aq(φ
′) for smaller formulas φ′.

9 / 25



Computing intuitionistic propositional quantifiers

Pitts constructs quantifiers, and proves correctness, by induction

on proofs of A ⊢ B.

The idea is that Ep(A) represents ‘all possible consequences of A in

a finite terminating proof search’ (Iemhoff 2019, v.d.Giessen 2023).

▶ What proof calculus to use?

10 / 25



Computing intuitionistic propositional quantifiers

Pitts constructs quantifiers, and proves correctness, by induction

on proofs of A ⊢ B.

The idea is that Ep(A) represents ‘all possible consequences of A in

a finite terminating proof search’ (Iemhoff 2019, v.d.Giessen 2023).

▶ What proof calculus to use?

10 / 25



A terminating sequent calculus

Gentzen calculus LJ has contraction, and the rule:

Γ, φ1 → φ2 ⊢ φ1 Γ, φ2 ⊢ ψ
Γ, φ1 → φ2 ⊢ ψ

which make proof search not obviously terminating.

Classical solution: G4ip uses multisets as sequents, and replaces

the →-left rule by a finer case analysis on φ1.

11 / 25



A terminating sequent calculus

Gentzen calculus LJ has contraction, and the rule:

Γ, φ1 → φ2 ⊢ φ1 Γ, φ2 ⊢ ψ
Γ, φ1 → φ2 ⊢ ψ

which make proof search not obviously terminating.

Classical solution: G4ip uses multisets as sequents, and replaces

the →-left rule by a finer case analysis on φ1.

11 / 25



G4ip

Replace →-left rule by the following four rules:

F , p,A ⊢ C

F , p, p → A ⊢ C

F ,A1 → (A2 → B) ⊢ C

F , (A1 ∧ A2) → B ⊢ C

F ,A1 → B,A2 → B ⊢ C

F , (A1 ∨ A2) → B ⊢ C

F ,A2 → B ⊢ A1 → A2 F ,B ⊢ C

F , (A1 → A2) → B ⊢ C

Theorem

The sequent calculus G4ip is terminating, sound and complete for

intuitionistic propositional logic.

(Originally discovered by Vorob’ev 1952. Hudelmaier 1988 rediscovered

it. Dyckhoff 1992 popularized it as ‘LJT’. Troelsta & Schwichtenberg

1996 introduced the name ‘G4ip’.)

12 / 25



G4ip

Replace →-left rule by the following four rules:

F , p,A ⊢ C

F , p, p → A ⊢ C

F ,A1 → (A2 → B) ⊢ C

F , (A1 ∧ A2) → B ⊢ C

F ,A1 → B,A2 → B ⊢ C

F , (A1 ∨ A2) → B ⊢ C

F ,A2 → B ⊢ A1 → A2 F ,B ⊢ C

F , (A1 → A2) → B ⊢ C

Theorem

The sequent calculus G4ip is terminating, sound and complete for

intuitionistic propositional logic.

(Originally discovered by Vorob’ev 1952. Hudelmaier 1988 rediscovered

it. Dyckhoff 1992 popularized it as ‘LJT’. Troelsta & Schwichtenberg

1996 introduced the name ‘G4ip’.)

12 / 25



G4ip

Replace →-left rule by the following four rules:

F , p,A ⊢ C

F , p, p → A ⊢ C

F ,A1 → (A2 → B) ⊢ C

F , (A1 ∧ A2) → B ⊢ C

F ,A1 → B,A2 → B ⊢ C

F , (A1 ∨ A2) → B ⊢ C

F ,A2 → B ⊢ A1 → A2 F ,B ⊢ C

F , (A1 → A2) → B ⊢ C

Theorem

The sequent calculus G4ip is terminating, sound and complete for

intuitionistic propositional logic.

(Originally discovered by Vorob’ev 1952. Hudelmaier 1988 rediscovered

it. Dyckhoff 1992 popularized it as ‘LJT’. Troelsta & Schwichtenberg

1996 introduced the name ‘G4ip’.)

12 / 25



G4ip

Replace →-left rule by the following four rules:

F , p,A ⊢ C

F , p, p → A ⊢ C

F ,A1 → (A2 → B) ⊢ C

F , (A1 ∧ A2) → B ⊢ C

F ,A1 → B,A2 → B ⊢ C

F , (A1 ∨ A2) → B ⊢ C

F ,A2 → B ⊢ A1 → A2 F ,B ⊢ C

F , (A1 → A2) → B ⊢ C

Theorem

The sequent calculus G4ip is terminating, sound and complete for

intuitionistic propositional logic.

(Originally discovered by Vorob’ev 1952. Hudelmaier 1988 rediscovered

it. Dyckhoff 1992 popularized it as ‘LJT’. Troelsta & Schwichtenberg

1996 introduced the name ‘G4ip’.)

12 / 25



G4ip

Replace →-left rule by the following four rules:

F , p,A ⊢ C

F , p, p → A ⊢ C

F ,A1 → (A2 → B) ⊢ C

F , (A1 ∧ A2) → B ⊢ C

F ,A1 → B,A2 → B ⊢ C

F , (A1 ∨ A2) → B ⊢ C

F ,A2 → B ⊢ A1 → A2 F ,B ⊢ C

F , (A1 → A2) → B ⊢ C

Theorem

The sequent calculus G4ip is terminating, sound and complete for

intuitionistic propositional logic.

(Originally discovered by Vorob’ev 1952. Hudelmaier 1988 rediscovered

it. Dyckhoff 1992 popularized it as ‘LJT’. Troelsta & Schwichtenberg

1996 introduced the name ‘G4ip’.)

12 / 25



G4ip

Replace →-left rule by the following four rules:

F , p,A ⊢ C

F , p, p → A ⊢ C

F ,A1 → (A2 → B) ⊢ C

F , (A1 ∧ A2) → B ⊢ C

F ,A1 → B,A2 → B ⊢ C

F , (A1 ∨ A2) → B ⊢ C

F ,A2 → B ⊢ A1 → A2 F ,B ⊢ C

F , (A1 → A2) → B ⊢ C

Theorem

The sequent calculus G4ip is terminating, sound and complete for

intuitionistic propositional logic.

(Originally discovered by Vorob’ev 1952. Hudelmaier 1988 rediscovered

it. Dyckhoff 1992 popularized it as ‘LJT’. Troelsta & Schwichtenberg

1996 introduced the name ‘G4ip’.)

12 / 25



G4ip

Replace →-left rule by the following four rules:

F , p,A ⊢ C

F , p, p → A ⊢ C

F ,A1 → (A2 → B) ⊢ C

F , (A1 ∧ A2) → B ⊢ C

F ,A1 → B,A2 → B ⊢ C

F , (A1 ∨ A2) → B ⊢ C

F ,A2 → B ⊢ A1 → A2 F ,B ⊢ C

F , (A1 → A2) → B ⊢ C

Theorem

The sequent calculus G4ip is terminating, sound and complete for

intuitionistic propositional logic.

(Originally discovered by Vorob’ev 1952. Hudelmaier 1988 rediscovered

it. Dyckhoff 1992 popularized it as ‘LJT’. Troelsta & Schwichtenberg

1996 introduced the name ‘G4ip’.)

12 / 25



G4ip

Replace →-left rule by the following four rules:

F , p,A ⊢ C

F , p, p → A ⊢ C

F ,A1 → (A2 → B) ⊢ C

F , (A1 ∧ A2) → B ⊢ C

F ,A1 → B,A2 → B ⊢ C

F , (A1 ∨ A2) → B ⊢ C

F ,A2 → B ⊢ A1 → A2 F ,B ⊢ C

F , (A1 → A2) → B ⊢ C

Theorem

The sequent calculus G4ip is terminating, sound and complete for

intuitionistic propositional logic.

(Originally discovered by Vorob’ev 1952. Hudelmaier 1988 rediscovered

it. Dyckhoff 1992 popularized it as ‘LJT’. Troelsta & Schwichtenberg

1996 introduced the name ‘G4ip’.)

12 / 25



A glimpse at Pitts’ table

13 / 25



Overview

Uniform interpolation

Practice

Theory

13 / 25



Pitts verified

In joint work with H. Férée (CPP 2023), we formalized Pitts’

construction and correctness proof in Coq, yielding a

correct-by-construction program that computes Ep and Ap.

https://hferee.github.io/UIML/

▶ Intricate properties of the proof calculus play a big role.

▶ We obtain a usable program (with optimizations to be done).

▶ Recently, with Férée, v.d. Giessen and Shillito (IJCAR 2024):

Extension of formalization to K, GL, and iSL.

Open problems:

▶ How to make it (even) more modular?

▶ How to tackle difficult cases (iGL)?

14 / 25

https://hferee.github.io/UIML/


Pitts verified

In joint work with H. Férée (CPP 2023), we formalized Pitts’

construction and correctness proof in Coq, yielding a

correct-by-construction program that computes Ep and Ap.

https://hferee.github.io/UIML/

▶ Intricate properties of the proof calculus play a big role.

▶ We obtain a usable program (with optimizations to be done).

▶ Recently, with Férée, v.d. Giessen and Shillito (IJCAR 2024):

Extension of formalization to K, GL, and iSL.

Open problems:

▶ How to make it (even) more modular?

▶ How to tackle difficult cases (iGL)?

14 / 25

https://hferee.github.io/UIML/


Pitts verified

In joint work with H. Férée (CPP 2023), we formalized Pitts’

construction and correctness proof in Coq, yielding a

correct-by-construction program that computes Ep and Ap.

https://hferee.github.io/UIML/

▶ Intricate properties of the proof calculus play a big role.

▶ We obtain a usable program (with optimizations to be done).

▶ Recently, with Férée, v.d. Giessen and Shillito (IJCAR 2024):

Extension of formalization to K, GL, and iSL.

Open problems:

▶ How to make it (even) more modular?

▶ How to tackle difficult cases (iGL)?

14 / 25

https://hferee.github.io/UIML/


Overview

Uniform interpolation

Practice

Theory

14 / 25



The algebraic approach

Intuitionistic propositional logic is algebraically interpreted by

Heyting algebras: structures (H,∨,∧,⊥,⊤,→) satisfying the

axioms of a bounded distributive lattice and, for all a, b, c ∈ H,

a ∧ b ≤ c ⇐⇒ a ≤ b → c .

A Heyting category (aka logos) is a coherent category in which all

change of base functors have upper and lower adjoints.

15 / 25



The algebraic approach

Intuitionistic propositional logic is algebraically interpreted by

Heyting algebras: structures (H,∨,∧,⊥,⊤,→) satisfying the

axioms of a bounded distributive lattice and, for all a, b, c ∈ H,

a ∧ b ≤ c ⇐⇒ a ≤ b → c .

A Heyting category (aka logos) is a coherent category in which all

change of base functors have upper and lower adjoints.

15 / 25



Pitts’ Theorem, semantically

Pitts’ theorem can be reformulated using Heyting algebras as:

Theorem (Pitts)

Any homomorphism between finitely generated free Heyting

algebras has both an upper and a lower adjoint.

A further consequence of this is:

Theorem (Pitts; Ghilardi & Zawadowski)

The opposite of the category HAfp of finitely presented Heyting

algebras is a Heyting category.

16 / 25



Pitts’ Theorem, semantically

Pitts’ theorem can be reformulated using Heyting algebras as:

Theorem (Pitts)

Any homomorphism between finitely generated free Heyting

algebras has both an upper and a lower adjoint.

A further consequence of this is:

Theorem (Pitts; Ghilardi & Zawadowski)

The opposite of the category HAfp of finitely presented Heyting

algebras is a Heyting category.

16 / 25



A proof via sheaves

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof

of Pitts’ theorem.

They start from the observation that every

finitely presented Heyting algebra H can be faithfully represented

by a covariant presheaf

ΦH : HAfin −→ Set

defined as the restriction of Hom(H,−) to finite algebras.

G&Z notice that ΦH can also be seen as a contravariant sheaf on

the category Posfin of finite posets, giving a functor

Φ : HAfp −→ Sh(Posfin),

and characterize the image of Φ via a combinatorial condition (∗).
They prove Pitts’ Theorem by showing that the direct image (∃)
and universal image (∀) operations on sheaves preserve (∗).

17 / 25



A proof via sheaves

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof

of Pitts’ theorem. They start from the observation that every

finitely presented Heyting algebra H can be faithfully represented

by a covariant presheaf

ΦH : HAfin −→ Set

defined as the restriction of Hom(H,−) to finite algebras.

G&Z notice that ΦH can also be seen as a contravariant sheaf on

the category Posfin of finite posets, giving a functor

Φ : HAfp −→ Sh(Posfin),

and characterize the image of Φ via a combinatorial condition (∗).
They prove Pitts’ Theorem by showing that the direct image (∃)
and universal image (∀) operations on sheaves preserve (∗).

17 / 25



A proof via sheaves

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof

of Pitts’ theorem. They start from the observation that every

finitely presented Heyting algebra H can be faithfully represented

by a covariant presheaf

ΦH : HAfin −→ Set

defined as the restriction of Hom(H,−) to finite algebras.

G&Z notice that ΦH can also be seen as a contravariant sheaf on

the category Posfin of finite posets, giving a functor

Φ : HAfp −→ Sh(Posfin),

and characterize the image of Φ via a combinatorial condition (∗).
They prove Pitts’ Theorem by showing that the direct image (∃)
and universal image (∀) operations on sheaves preserve (∗).

17 / 25



A proof via sheaves

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof

of Pitts’ theorem. They start from the observation that every

finitely presented Heyting algebra H can be faithfully represented

by a covariant presheaf

ΦH : HAfin −→ Set

defined as the restriction of Hom(H,−) to finite algebras.

G&Z notice that ΦH can also be seen as a contravariant sheaf on

the category Posfin of finite posets, giving a functor

Φ : HAfp −→ Sh(Posfin),

and characterize the image of Φ via a combinatorial condition (∗).

They prove Pitts’ Theorem by showing that the direct image (∃)
and universal image (∀) operations on sheaves preserve (∗).

17 / 25



A proof via sheaves

S. Ghilardi and M. Zawadowski (1995) gave a new, semantic proof

of Pitts’ theorem. They start from the observation that every

finitely presented Heyting algebra H can be faithfully represented

by a covariant presheaf

ΦH : HAfin −→ Set

defined as the restriction of Hom(H,−) to finite algebras.

G&Z notice that ΦH can also be seen as a contravariant sheaf on

the category Posfin of finite posets, giving a functor

Φ : HAfp −→ Sh(Posfin),

and characterize the image of Φ via a combinatorial condition (∗).
They prove Pitts’ Theorem by showing that the direct image (∃)
and universal image (∀) operations on sheaves preserve (∗).

17 / 25



Quantifier elimination from uniform interpolation

Ghilardi and Zawadowski use Pitts’ theorem to prove:

Theorem. The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an extension

with quantifier elimination and the same universal theory.

One may identify the algebraic conditions needed for this, giving a

modular approach to model completions (Ghilardi & Zawadowski

2002; vG., Tsinakis, Metcalfe 2017; Metcalfe & Reggio 2023).

Further direction: Model completions for other varieties of

logic-related algebras (LTL, CTL, . . . , see Ghilardi & vG. 2016–. . . )

18 / 25



Quantifier elimination from uniform interpolation

Ghilardi and Zawadowski use Pitts’ theorem to prove:

Theorem. The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an extension

with quantifier elimination and the same universal theory.

One may identify the algebraic conditions needed for this, giving a

modular approach to model completions (Ghilardi & Zawadowski

2002; vG., Tsinakis, Metcalfe 2017; Metcalfe & Reggio 2023).

Further direction: Model completions for other varieties of

logic-related algebras (LTL, CTL, . . . , see Ghilardi & vG. 2016–. . . )

18 / 25



Quantifier elimination from uniform interpolation

Ghilardi and Zawadowski use Pitts’ theorem to prove:

Theorem. The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an extension

with quantifier elimination and the same universal theory.

One may identify the algebraic conditions needed for this, giving a

modular approach to model completions (Ghilardi & Zawadowski

2002; vG., Tsinakis, Metcalfe 2017; Metcalfe & Reggio 2023).

Further direction: Model completions for other varieties of

logic-related algebras (LTL, CTL, . . . , see Ghilardi & vG. 2016–. . . )

18 / 25



Quantifier elimination from uniform interpolation

Ghilardi and Zawadowski use Pitts’ theorem to prove:

Theorem. The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an extension

with quantifier elimination and the same universal theory.

One may identify the algebraic conditions needed for this, giving a

modular approach to model completions (Ghilardi & Zawadowski

2002; vG., Tsinakis, Metcalfe 2017; Metcalfe & Reggio 2023).

Further direction: Model completions for other varieties of

logic-related algebras (LTL, CTL, . . . , see Ghilardi & vG. 2016–. . . )

18 / 25



Pitts via duality

A re-interpretation of the G&Z sheaf-theoretic proof.

Any bounded distributive lattice H can be described as a lattice of

compact-open subsets of a topological space X , based on the set

DL(H, 2)

of homomorphisms to the two-element lattice (Stone 1937).

Esakia (1974) derived from this a dual equivalence between

Heyting algebras and certain ordered compact spaces, now called

Esakia spaces. The finite part is Kripke semantics.

19 / 25



Pitts via duality

A re-interpretation of the G&Z sheaf-theoretic proof.

Any bounded distributive lattice H can be described as a lattice of

compact-open subsets of a topological space X , based on the set

DL(H, 2)

of homomorphisms to the two-element lattice (Stone 1937).

Esakia (1974) derived from this a dual equivalence between

Heyting algebras and certain ordered compact spaces, now called

Esakia spaces. The finite part is Kripke semantics.

19 / 25



Pitts via duality

A re-interpretation of the G&Z sheaf-theoretic proof.

Any bounded distributive lattice H can be described as a lattice of

compact-open subsets of a topological space X , based on the set

DL(H, 2)

of homomorphisms to the two-element lattice (Stone 1937).

Esakia (1974) derived from this a dual equivalence between

Heyting algebras and certain ordered compact spaces, now called

Esakia spaces. The finite part is Kripke semantics.

19 / 25



Advertising break

97
81

0
0

93
49

69
7 

G
E

H
R

K
E

 &
 V

A
N

 G
O

O
L 

–
 T

O
P

O
LO

G
IC

A
L 

D
U

A
LI

T
Y

 F
O

R
 D

IS
TR

IB
U

TI
V

E
 L

A
T

TI
C

E
S

 P
P

C
 C

 M
 Y

 K

G
EH

R
K

E A
N

D
 V

A
N

 G
O

O
L

CA
MBR

IDGE T
RA

CT
S 

IN
 TH

EO
RE

TIC
AL 

CO
MPU

TER
 SC

IEN
CE

61

TO
PO

LO
G

IC
A

L D
U

A
LITY

 FO
R 

D
ISTR

IB
U

TIV
E LA

TTIC
ES

Introducing Stone–Priestley duality theory and its 
applications to logic and theoretical computer science, 
this book equips graduate students and researchers 
with the theoretical background necessary for reading 
and understanding current research in the area.

After giving a thorough introduction to the 
algebraic, topological, logical, and categorical 
aspects of the theory, the book covers its advanced 
applications in computer science, namely in domain 
theory and automata theory. These topics are at the 
forefront of active research seeking to unify semantic 
methods with more algorithmic topics in finite model 
theory. Frequent exercises punctuate the text, with 
hints and references provided.

“This book introduces efficiently Stone-Priestley duality 
theory for bounded distributive lattices, thereby laying 
solid mathematical foundations for applications in 
mathematics and computer science. Readers interested 
in the fields of domain theory and automata theory 
will see the general duality theory bearing fruit and 
opening doors to further applications.”
Jorge Almeida, Universidade do Porto

“This book is a textbook and also a research 
monograph. For undergraduates, there is the basic 
duality; for postgraduates, applications in algebra, 
topology, and logic, and to theoretical computer 
science. Then, there are research themes to develop. 
The applications to CS are exciting and not published 
as a book before.”
Mirna Džamonja, IRIF, CNRS-Université de Paris

Topological 
Duality for 
Distributive 
Lattices

Theory and 
Applications

Mai Gehrke and 
Sam van Gool

CA
MBR

IDGE T
RA

CT
S 

IN
 TH

EO
RE

TIC
AL 

CO
MPU

TER
 SC

IEN
CE

61

Now in print!

20% discount flyer available by

e-mail from the authors

(vangool@irif.fr)

M. Gehrke & SvG: Topological Duality for Distributive Lattices: Theory

and Applications, Cambridge University Press, 369pp (2024).

20 / 25



Esakia spaces

An Esakia space is a compact ordered space that is totally order

disconnected and such that ↑U is open for every open set U.

The main Esakia space of interest here is the canonical model,

X (p̄), over a finite set of variables p̄:

▶ points are prime theories in variables p̄;

▶ order is inclusion of theories;

▶ topology is generated by φ̂ := {x ∈ X (p̄) | φ ∈ x}.

A co-finitely presented Esakia space is one that is isomorphic to a

clopen up-set of X (p̄), for some finite p̄.

21 / 25



Esakia spaces

An Esakia space is a compact ordered space that is totally order

disconnected and such that ↑U is open for every open set U.

The main Esakia space of interest here is the canonical model,

X (p̄), over a finite set of variables p̄:

▶ points are prime theories in variables p̄;

▶ order is inclusion of theories;

▶ topology is generated by φ̂ := {x ∈ X (p̄) | φ ∈ x}.

A co-finitely presented Esakia space is one that is isomorphic to a

clopen up-set of X (p̄), for some finite p̄.

21 / 25



Esakia spaces

An Esakia space is a compact ordered space that is totally order

disconnected and such that ↑U is open for every open set U.

The main Esakia space of interest here is the canonical model,

X (p̄), over a finite set of variables p̄:

▶ points are prime theories in variables p̄;

▶ order is inclusion of theories;

▶ topology is generated by φ̂ := {x ∈ X (p̄) | φ ∈ x}.

A co-finitely presented Esakia space is one that is isomorphic to a

clopen up-set of X (p̄), for some finite p̄.

21 / 25



An open mapping theorem

We give an open mapping theorem for Esakia spaces:

Theorem (vG. & Reggio 2018)

Every continuous monotone bounded map between co-finitely

presented Esakia spaces is open.

By Esakia duality, this implies the algebraic Pitts’ Theorem:

Corollary

Every homomorphism between finitely presented Heyting algebras

has a lower and upper adjoint.

22 / 25



An open mapping theorem

We give an open mapping theorem for Esakia spaces:

Theorem (vG. & Reggio 2018)

Every continuous monotone bounded map between co-finitely

presented Esakia spaces is open.

By Esakia duality, this implies the algebraic Pitts’ Theorem:

Corollary

Every homomorphism between finitely presented Heyting algebras

has a lower and upper adjoint.

22 / 25



Definable bisimulation quantifiers

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation ↔ definability of bisimulation quantifiers.

A p̄-model is a poset (X ,≤), with a function v : p̄ → Up(X ,≤).

By induction, any formula φ gets a semantics JφKX ∈ Up(X ,≤).

If Epφ and Apφ are the uniform interpolants for φ, then

JEpφKX = {x ∈ X | ∃X ′, x ′ with (X ′, x ′) ∼p (X , x) and x ′ ∈ JφKX ′},

JApφKX = {x ∈ X | ∀X ′, x ′ with (X ′, x ′) ∼p (X , x), x ′ ∈ JφKX ′}.

Here, ∼p is the relation of bisimilarity up to p.

Thus, it suffices to show that the sets on the right are definable.

23 / 25



Definable bisimulation quantifiers

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation ↔ definability of bisimulation quantifiers.

A p̄-model is a poset (X ,≤), with a function v : p̄ → Up(X ,≤).

By induction, any formula φ gets a semantics JφKX ∈ Up(X ,≤).

If Epφ and Apφ are the uniform interpolants for φ, then

JEpφKX = {x ∈ X | ∃X ′, x ′ with (X ′, x ′) ∼p (X , x) and x ′ ∈ JφKX ′},

JApφKX = {x ∈ X | ∀X ′, x ′ with (X ′, x ′) ∼p (X , x), x ′ ∈ JφKX ′}.

Here, ∼p is the relation of bisimilarity up to p.

Thus, it suffices to show that the sets on the right are definable.

23 / 25



Definable bisimulation quantifiers

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation ↔ definability of bisimulation quantifiers.

A p̄-model is a poset (X ,≤), with a function v : p̄ → Up(X ,≤).

By induction, any formula φ gets a semantics JφKX ∈ Up(X ,≤).

If Epφ and Apφ are the uniform interpolants for φ, then

JEpφKX = {x ∈ X | ∃X ′, x ′ with (X ′, x ′) ∼p (X , x) and x ′ ∈ JφKX ′},

JApφKX = {x ∈ X | ∀X ′, x ′ with (X ′, x ′) ∼p (X , x), x ′ ∈ JφKX ′}.

Here, ∼p is the relation of bisimilarity up to p.

Thus, it suffices to show that the sets on the right are definable.

23 / 25



Definable bisimulation quantifiers

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation ↔ definability of bisimulation quantifiers.

A p̄-model is a poset (X ,≤), with a function v : p̄ → Up(X ,≤).

By induction, any formula φ gets a semantics JφKX ∈ Up(X ,≤).

If Epφ and Apφ are the uniform interpolants for φ, then

JEpφKX = {x ∈ X | ∃X ′, x ′ with (X ′, x ′) ∼p (X , x) and x ′ ∈ JφKX ′},

JApφKX = {x ∈ X | ∀X ′, x ′ with (X ′, x ′) ∼p (X , x), x ′ ∈ JφKX ′}.

Here, ∼p is the relation of bisimilarity up to p.

Thus, it suffices to show that the sets on the right are definable.

23 / 25



Definable bisimulation quantifiers

First main idea in all semantic proofs (see also Visser, 1996):

uniform interpolation ↔ definability of bisimulation quantifiers.

A p̄-model is a poset (X ,≤), with a function v : p̄ → Up(X ,≤).

By induction, any formula φ gets a semantics JφKX ∈ Up(X ,≤).

If Epφ and Apφ are the uniform interpolants for φ, then

JEpφKX = {x ∈ X | ∃X ′, x ′ with (X ′, x ′) ∼p (X , x) and x ′ ∈ JφKX ′},

JApφKX = {x ∈ X | ∀X ′, x ′ with (X ′, x ′) ∼p (X , x), x ′ ∈ JφKX ′}.

Here, ∼p is the relation of bisimilarity up to p.

Thus, it suffices to show that the sets on the right are definable.

23 / 25



Topological proof

To establish that the bisimulation quantifiers are definable, one can

use a layered version of bisimulation. In our work with Reggio, we

view this as a metric on the canonical model X (p, q̄):

d(x , y)
def
= 2−min{|φ|→ : exactly one of x and y is in JφK}.

Here, |φ|→ is the maximum depth of nestings of → in φ.

We then show that the projection πp : X (p, q̄) ↠ X (q̄) is open:

Lemma

For every n ∈ N, there exists R(n) >> n such that

B(π(x), 2−R(n)) ⊆ π[B(x , 2−n)].

The number R(n) gives a computable bound on the →-depth of

uniform interpolants of formulas of →-depth n.

24 / 25



Topological proof

To establish that the bisimulation quantifiers are definable, one can

use a layered version of bisimulation. In our work with Reggio, we

view this as a metric on the canonical model X (p, q̄):

d(x , y)
def
= 2−min{|φ|→ : exactly one of x and y is in JφK}.

Here, |φ|→ is the maximum depth of nestings of → in φ.

We then show that the projection πp : X (p, q̄) ↠ X (q̄) is open:

Lemma

For every n ∈ N, there exists R(n) >> n such that

B(π(x), 2−R(n)) ⊆ π[B(x , 2−n)].

The number R(n) gives a computable bound on the →-depth of

uniform interpolants of formulas of →-depth n.

24 / 25



Topological proof

To establish that the bisimulation quantifiers are definable, one can

use a layered version of bisimulation. In our work with Reggio, we

view this as a metric on the canonical model X (p, q̄):

d(x , y)
def
= 2−min{|φ|→ : exactly one of x and y is in JφK}.

Here, |φ|→ is the maximum depth of nestings of → in φ.

We then show that the projection πp : X (p, q̄) ↠ X (q̄) is open:

Lemma

For every n ∈ N, there exists R(n) >> n such that

B(π(x), 2−R(n)) ⊆ π[B(x , 2−n)].

The number R(n) gives a computable bound on the →-depth of

uniform interpolants of formulas of →-depth n.

24 / 25



Outlook

▶ Uniform interpolation is a fertile ground for exploration:

proof-theoretic, semantic, and computational aspects.

There

is still plenty of work to do:

▶ Better understanding of connection between proof theory vs.

semantic proofs.

▶ Studying & improving complexity (theoretical & practical).

▶ Uniform interpolation for other logics; in particular, iGL.

▶ For logics without (uniform) interpolation, an interesting

computational problem: compute (uniform) interpolants when

they exist, if not, provide a witness that they cannot exist.

25 / 25



Outlook

▶ Uniform interpolation is a fertile ground for exploration:

proof-theoretic, semantic, and computational aspects. There

is still plenty of work to do:

▶ Better understanding of connection between proof theory vs.

semantic proofs.

▶ Studying & improving complexity (theoretical & practical).

▶ Uniform interpolation for other logics; in particular, iGL.

▶ For logics without (uniform) interpolation, an interesting

computational problem: compute (uniform) interpolants when

they exist, if not, provide a witness that they cannot exist.

25 / 25



Outlook

▶ Uniform interpolation is a fertile ground for exploration:

proof-theoretic, semantic, and computational aspects. There

is still plenty of work to do:

▶ Better understanding of connection between proof theory vs.

semantic proofs.

▶ Studying & improving complexity (theoretical & practical).

▶ Uniform interpolation for other logics; in particular, iGL.

▶ For logics without (uniform) interpolation, an interesting

computational problem: compute (uniform) interpolants when

they exist, if not, provide a witness that they cannot exist.

25 / 25



Outlook

▶ Uniform interpolation is a fertile ground for exploration:

proof-theoretic, semantic, and computational aspects. There

is still plenty of work to do:

▶ Better understanding of connection between proof theory vs.

semantic proofs.

▶ Studying & improving complexity (theoretical & practical).

▶ Uniform interpolation for other logics; in particular, iGL.

▶ For logics without (uniform) interpolation, an interesting

computational problem: compute (uniform) interpolants when

they exist, if not, provide a witness that they cannot exist.

25 / 25



Outlook

▶ Uniform interpolation is a fertile ground for exploration:

proof-theoretic, semantic, and computational aspects. There

is still plenty of work to do:

▶ Better understanding of connection between proof theory vs.

semantic proofs.

▶ Studying & improving complexity (theoretical & practical).

▶ Uniform interpolation for other logics; in particular, iGL.

▶ For logics without (uniform) interpolation, an interesting

computational problem: compute (uniform) interpolants when

they exist, if not, provide a witness that they cannot exist.

25 / 25



Thank you!

25 / 25


