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Answer yes iff A accepts w.
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R := 0%(1(01*0)*1)"0*
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Regular languages: example

» A programming problem: given a natural number in binary,

w € {0,1}*, determine whether or not w is divisible by 3.
» Solution 1: a (deterministic) automaton A:

0 1

1 0
g O ) —C)
1 0

Answer yes iff A accepts w.
» Solution 3: a homomorphism ¢: {0,1}* — S3
0 (12), 1+ (01).
Answer yes iff the permutation ¢(w) fixes 0.
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Regular languages

Let X be a finite alphabet.

Theorem (Kleene, 1950s)

For any language L C ¥+, the following are equivalent:
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Regular languages

Let X be a finite alphabet.

Theorem (Kleene, 1950s)

For any language L C ¥+, the following are equivalent:
1. the language L is accepted by a (deterministic) finite automaton;

2. the language L is described by a regular expression, built from ¥,

O*, -, U (and complementation);

3. the language L is recognized by a homomorphism to a finite

semigroup;
4. the language L is definable in monadic second order logic.

Moreover, there is a computable ‘minimal’ such semigroup, called

the syntactic semigroup of L.
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Star-free languages

» A meta-problem: given a regular expression R, determine
whether or not there is a star-free regular expression R’ which

describes the same language: L(R) = L(R').
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» A meta-problem: given a regular expression R, determine
whether or not there is a star-free regular expression R’ which
describes the same language: L(R) = L(R').

Theorem (Schiitzenberger, 1960s)

The following are equivalent, for any language L:

1. the language L is accepted by a counter-free finite automaton;

2. the language L is described by a star-free expression;
3. the language L is recognized by a homomorphism to a finite
semigroup any subgroup of which is trivial;

4. the language L is definable in first order logic.

» Schiitzenberger's Theorem solves the membership problem for
the class of star-free languages.

» A semigroup as in (3) is called aperiodic.
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Varieties

» A class of finite semigroups V is a variety if it is closed under

finite products, homomorphic images, and subsemigroups.

» If V is a variety and X is a finite alphabet, V(X) denotes the

set of languages L C ¥ T with syntactic semigroup in V.

» The indexed collection V: ¥ — V(X) is a presheaf of Boolean

algebras.
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finite products, homomorphic images, and subsemigroups.

» If V is a variety and X is a finite alphabet, V(X) denotes the

set of languages L C ¥ T with syntactic semigroup in V.
» The indexed collection V: ¥ — V(X) is a presheaf of Boolean
algebras.
Theorem (Gehrke, Grigorieff, Pin 2010)

The enriched Stone dual space of ultrafilters of V(X)) coincides with
the free pro-V semigroup generated by Y.

» The free profinite semigroup, fjr maps onto the free pro-V
semigroup with a map 7y : I I?V(Z).
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» An interpolation problem: given regular expressions Ry, R»,
determine whether there exists a star-free expression R such
that L(Ry) C L(R) C L(R»).

» Equivalently, a separation problem: determine whether there
exists a star-free expression R such that L(Ry) C L(R) and
L(R)NL(R)=1.

Theorem
The separation problem for star-free languages is decidable.
» The proof (Henckell 1988) translates the problem to a

combinatorial question about a finite semigroup, namely, to

compute its aperiodic-pointlike sets.
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Pointlike sets

Proposition
Let V be a variety of finite semigroups, and let S be a finite

semigroup. For any subset X of S, the following are equivalent:
1. there exist profinite words x1,...,x, € St such that

X =A{[xls,---,[xa]s} and my(x1) = - -+ = wv(xn);
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Proposition
Let V be a variety of finite semigroups, and let S be a finite
semigroup. For any subset X of S, the following are equivalent:
1. there exist profinite words x1,...,Xn € S+ such that
X =A{[xls,---,[xa]s} and my(x1) = - -+ = wv(xn);
2. for every relational morphism p: S — T with T € V, there
exists t € T such that xpt for all x € X.

A relational morphism is a subsemigroup p € S x T with sp # () for all s € S.
The set X is called a V-pointlike subset of S if the conditions in
the proposition are satisfied.

Example. Any subgroup G of a finite semigroup S is A-pointlike.

8/21



Separation and pointlike sets

Proposition
Let V be a variety. For any regular languages L1,L, C X, the

following are equivalent:

1. Ly is not separable from Ly by a language in V(X);

9/21



Separation and pointlike sets

Proposition
Let V be a variety. For any regular languages L1,L, C X, the

following are equivalent:
1. Ly is not separable from Ly by a language in V(X);

2. there exist profinite words wy, wa € XF, with w; € cl(L;), such

that my(wy) = my(we);

9/21



Separation and pointlike sets

Proposition
Let V be a variety. For any regular languages L1,L, C X, the

following are equivalent:
1. Ly is not separable from Ly by a language in V(X);

2. there exist profinite words wi, wy € fjr with w; € cl(L;), such
that my(wy) = my(we);

3. for any homomorphism ¢ from ¥ to a finite semigroup which
recognizes Ly and Ly, there exist s; € ¢(L;) such that the set
{s1,s2} is V-pointlike.

9/21



Separation and pointlike sets

Cl(Ll)

9/21



Separation and pointlike sets

Cl(Ll)

S+

TV

Fu(Z)

9/21



Separation and pointlike sets

9/21



Separation and pointlike sets

ZA+—>S

TV

Fu(Z)

9/21



Separation and pointlike sets

-

8

- fb\g wi)

°
5®

" p(w2)

Fu(Z)

9/21



Separation and pointlike sets

Fu(Z)

-

8

9/21



Separation and pointlike sets

Proposition
Let V be a variety. For any regular languages L1,L, C X, the

following are equivalent:
1. Ly is not separable from Ly by a language in V(X);

2. there exist profinite words wy, wy € fjr with w; € cl(L;), such
that my(wy) = my(we);

3. for any homomorphism ¢ from ¥ to a finite semigroup which
recognizes Ly and Ly, there exist s; € ¢(L;) such that the set
{s1,s2} is V-pointlike.

9/21



Theorem (Henckell, 1988)

The A-pointlike sets of a finite semigroup are computable, where A

is the variety of aperiodic semigroups.

10/21



Theorem (Henckell, 1988)

The A-pointlike sets of a finite semigroup are computable, where A

is the variety of aperiodic semigroups.

» Thus, the separation problem for star-free languages is

decidable.

10/21



New result

10/21



Benjamin Steinberg oo
¢ January 16 - &%

Hard to believe I'm still working on pointlike sets after 20 years but...
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Generalizing aperiodic semigroups
» Aperiodic semigroup = all subgroups trivial = iterated
semi-direct product of semilattices.

Theorem (Krohn-Rhodes Decomposition)

Any finite semigroup divides an iterated semi-direct product of

finite semilattices and finite simple groups.

» For a variety of finite groups H, define

H := {S finite semigroup : all subgroups of S are in H}.
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Theorem (G. & Steinberg 2018)

For any variety of finite groups H with decidable membership,
the H-pointlike sets are computable, and thus, in particular,

the separation problem for H-languages is decidable.
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Corollaries

» H =1, the variety containing only the trivial group.
= Aperiodic-pointlikes computable (Henckell 1988)
» H = G, the variety of groups whose order is divisible only by

primes in a computable set 7.
= G -pointlikes computable (Henckell, Rhodes, Steinberg 2010)

» H = Gy, the variety of solvable groups. Semigroups in Gy

are called solvable semigroups.
= Ggo1-pointlikes computable (G. & Steinberg 2018)
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Computing pointlikes

Proposition
Let V be a variety of finite semigroups.

The set of V-pointlikes, PLy/(S), of a finite semigroup S, is:
» a subsemigroup of P(S): X - Y is V-pointlike if X and Y are,

» a down-set: if X is VV-pointlike then so is any non-empty

subset of X.
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Computing pointlikes

Proposition
Let V be a variety of finite semigroups.

The set of V-pointlikes, PLy/(S), of a finite semigroup S, is:
» a subsemigroup of P(S): X - Y is V-pointlike if X and Y are,

» a down-set: if X is VV-pointlike then so is any non-empty

subset of X.
Moreover, PLy is a submonad of P:
» singletons are V-pointlike,

» the union | J X of any V-pointlike subset X of the semigroup
PLv(S) is V-pointlike.
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Computing H-pointlikes

Definition
The H-kernel of a group G, Ky(G), is the smallest normal
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Computing H-pointlikes
Definition
The H-kernel of a group G, Ky(G), is the smallest normal
subgroup N of G such that G/N belongs to H.
Definition
Let T be a finite semigroup. The H-saturation of T is the smallest
downward closed subsemigroup S of P(T) containing all singletons
{t} (t € T), such that |JKu(G) € S for any subgroup G of S.

Note. H-saturations are computable if H is decidable.
Theorem (Computation of H-pointlikes)

Let T be a finite semigroup. A subset X of T is H-pointlike if, and
only if, X belongs to the H-saturation of T.

Difficult direction: every pointlike set is in the saturation.
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Completeness of the algorithm

Write S for the H-saturation of T.

v

v

To show that every pointlike set of T lies in S, we need to
expand the semigroup S to a semigroup SH such that:

» SH lies in H, and

» there is a relational morphism p: T — SH such that

p~ (o) €S for every o € SH.

v

Ingredients for building S" and p:

» a blow-up operator on S;

» an action on strict L-chains of H-elements in S;

v

Hardest part: showing that S" lies in H.
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» For elements s, t of a semigroup S, we write s <; t when

s = at for some o € SU {1}, i.e,, 't is a suffix of s’

» The induced equivalence relation is called L and L, denotes

the L-equivalence class of u.

» Every element s € S has a group ['s associated to it, its
Schiitzenberger group, which is the faithful quotient of the

right permutation action on Lg by its stabilizer.

» Call s € S an H-element if ['5 lies in H.
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A blow-up operator on S

Proposition
There exists an idempotent operation b: S — S which fixes exactly
the H-elements, is <;-contracting and C-expanding, i.e., for all

s€S, b(s) <y s ands C b(s).

19/21



A blow-up operator on S

Proposition

There exists an idempotent operation b: S — S which fixes exactly
the H-elements, is <;-contracting and C-expanding, i.e., for all
s€S, b(s) <y s ands C b(s).

Proof.

» For every s € S, there is a subgroup Gs of S with quotient .

19/21



A blow-up operator on S

Proposition

There exists an idempotent operation b: S — S which fixes exactly
the H-elements, is <;-contracting and C-expanding, i.e., for all
s€S, b(s) <y s ands C b(s).

Proof.

» For every s € S, there is a subgroup Gs of S with quotient .
» Define by(s) := (U Ku(Gs)) - s.

19/21



A blow-up operator on S

Proposition

There exists an idempotent operation b: S — S which fixes exactly
the H-elements, is <;-contracting and C-expanding, i.e., for all
s€S, b(s) <y s ands C b(s).

Proof.

» For every s € S, there is a subgroup Gs of S with quotient .
» Define by(s) := (U Ku(Gs)) - s.
» Composing by sufficiently often with itself yields an

idempotent operation b. O]
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The semigroup SH

» The original semigroup T acts on the finite set of strict
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The semigroup SH

» The original semigroup T acts on the finite set of strict
L-chains of H-elements of S.
» Forany t € T and q a strict L-chain of H-elements:
1. multiply every item in the chain q by t and add {t} in front,

2. recursively apply the blow-up operator b to the chain,

3. ‘pop’ L-equivalent elements to obtain a strict chain o.(q).

» Let SH be the semigroup generated by the functions o¢, t € T.

Theorem
The semigroup SH is a quotient of a subsemigroup of an infinite

wreath product acting on S*, which lies in H.
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» We showed that pointlikes are computable and separation

decidable for H whenever H is a decidable variety of groups.
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Final remarks

» We showed that pointlikes are computable and separation
decidable for H whenever H is a decidable variety of groups.

» Computability of H-pointlikes implies decidability of
membership for more involved varieties built from H; one may
studies these algorithms for specific choices of H.

» If the variety H is defined by profinite identities (e.g., trivial,
abelian, solvable), these can be used to obtain a faster
algorithm for computing H-pointlikes than the ‘generic’

saturation algorithm via H-kernels.
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implementations for concrete H are future work.
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Regular expressions for solvable semigroups

Theorem

A language is recognizable by a solvable semigroup iff it can be
described by an AC-regular expression, i.e., an expression built up
from X*, Boolean operations, and, for any AC-regular expressions
R,S, a€ X, prime p and 0 < q < p, the expressions RaS, and
(RaS)3™°d P which describes the language:

{weX:#{(u,v) e RxS:w=uvav}=qmod p}.

Example
Let ¥ = {0,1} and R = X*\ (X*1X¥), so that L(R) = 0*.
The AC-expression (R1R)9 ™4 P describes the language of words

containing ¢ mod p occurrences of 1.
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