
Logical reflections
Profinite monoids, propositional quantifiers, and temporal operators

Sam van Gool

Manuscript for the Habilitation à Diriger des Recherches (HDR)
Université Paris Cité

December 6, 2024

Defended at Université Paris Cité on December 6, 2024.
Reviewers and jury members:

• Valérie Berthé

Directrice de Recherche, CNRS, Université Paris Cité examinatrice

• Jean Goubault-Larrecq

Professeur des Universités, Université Paris-Saclay rapporteur

• Victoria Gould

Professeure, University of York rapportrice

• Dexter Kozen

Professeur émérite, Cornell University rapporteur

• Paul-André Melliès

Directeur de Recherche, CNRS, INRIA, Université Paris Cité examinateur

• Carlos Simpson

Directeur de Recherche, CNRS, Université Côte d’Azur examinateur

• Christine Tasson

Professeure des Universités, Institut Supérieur de l’Aéronautique et de l’Espace examinatrice

ii

Contents

Introduction v

Acknowledgments vii

1 Monoids: Profiniteness, models and pointlikes 1
1.1 Proaperiodic monoids and saturated models . 2
1.2 Covering, separation and pointlike sets . 12
1.3 Outlook on profinite monoids and pointlike sets . 19

2 Uniform interpolation: Topology, proof theory, and compact congruences 21
2.1 An open mapping theorem for Esakia spaces . 24
2.2 Verified computation of uniform interpolants . 28
2.3 Compact congruences and model-completeness . 32
2.4 Outlook on uniform interpolation . 36

3 Temporal logic: Model companions and unification 39
3.1 Model-complete extensions of temporal theories . 40
3.2 De Bruijn graphs and unification for deterministic next 47
3.3 Outlook on temporal logic . 58

Bibliography 61

iii

Introduction

In this document, I will survey some of the research in algebra, topology, logic, and the foundations
of computer science that I have contributed to since completing my PhD in 2014, and I will also sug-
gest directions for further research in this field. The work I report on here falls into three research
themes: profinite monoids and their relationship to automata and regular languages (Chapter 1); uni-
form interpolation and its relationship to model-complete theories (Chapter 2); axiomatization and
unifiability for temporal logics (Chapter 3). In each chapter, I will place the research theme in context,
discuss my own results that fall under it, and, at the end of the chapter, I will provide an outlook on
possible future research questions and directions that these results suggest. In this brief introduction
to the document as a whole, I will only briefly comment on what I consider to be the most important
common points between these three themes, which benefit greatly from cross-pollination.

I am generally interested in decidability and computational problems in logic for which the solution
requires understanding their underlying mathematical invariants, typically algebraic and topological
in nature. Specific instances in this document include: the solution of separation and covering prob-
lems for regular languages via pointlike sets in monoids (Section 1.2); the computation of uniform
interpolants via a topological open mapping theorem (Section 2.1); and the solution of a unifiability
problem in temporal logic via graph homomorphisms (Section 3.2). Many of these results contain ap-
plications of dualities between algebra and topology, which reflect the intimate bond between syntax
and semantics in logic. An introduction to duality theory and a number of such applications are in
the book [60], which we started writing in 2014, and which appeared earlier this year. In order to
keep the current document self-contained, I recall the necessary notions from duality theory as I need
them, and the overlap with [60] is small: This text is about the evolution of my research interests be-
yond the material in [60]. Furthermore, in the interest of maximizing accessibility, I avoid relying on
category-theoretic terminology and techniques when possible, preferring to give elementary proofs
that can be followed without too many preliminary definitions.
While the results discussed in this document take place in a variety of subfields, a thematic co-

herence can be found in the recurring appearance of certain mathematical objects and techniques. I
highlight two particular instances of this. First, I often use concepts from infinite model theory and
universal algebra for studying finitary phenomena, e.g., the use of saturated models for pseudofinite
words in Section 1.1, adjunctions between compact congruences in Section 2.3, and model compan-
ions for temporal logic in Section 3.1. Second, projective limits of finite structures appear in various
guises in each chapter, e.g., as profinite monoids in Section 1.1, as Esakia spaces in Section 2.1, and
as generalized Cantor spaces in Section 3.2. For each of the problems solved in those sections, these
profinite objects give a canonical, continuous, topological structure that allows for a mathematical,
infinitary analysis of the particular, discrete, finite structures at hand. This kind of interplay between
the finite and infinite, and between the discrete and continuous, never ceases to fascinate me, and I
hope this document can convey some of that fascination to the reader.

v

Acknowledgments

First of all, I am immensely grateful to all the co-authors with whom I have had the joy to collaborate
on the research contained in this document,1 and beyond. In addition, I have been lucky to exchange
scientific ideas with, and learn from, a number of colleagues who are not my co-authors (yet); several
of them have also provided crucial support and advice to me at various stages of my post-doctoral ca-
reer, especially since my arrival as amaître de conférences in France in 2019 and during the preparation
of this HDRmanuscript. The people who provide suchmentorship to their peers are not always visible
on a bibliography or curriculum vitae, but their words of support and advice have often been as im-
portant to my development as new scientific insights. I am very fortunate that all of these colleagues
are not only highly skilled, imaginative, and original thinkers, but also, on the human level, incredi-
bly generous, humorous, and loyal friends. If you ever meet any one of them, try asking them what
they have been thinking about recently; you will probably hear a good story. Samson Abramsky,
Quentin Aristote, Guillaume Baudart, Mikołaj Bojańczyk, Olivier Carton, Vincent Cheval, Thomas
Colcombet, Pierre-Évariste Dagand, Laure Daviaud, Mirna Džamonja, Thomas Ehrhard, Hugo Férée,
Marie Fortin, Wesley Fussner, Mai Gehrke, Silvio Ghilardi, Iris van der Giessen, Adrien Guatto, Ros-
alie Iemhoff, Peter Jipsen, Achim Jung, Ganna Kudryavtseva, Denis Kuperberg, Jérémie Marquès, Vin-
cenzo Marra, Johannes Marti, Paul-André Melliès, George Metcalfe, Vincent Moreau, Rémi Morvan,
Filippo Nuccio, Michele Pagani, Alessandra Palmigiano, Charles Paperman, Daniela Petrişan, Jean-
Éric Pin, Hilary Priestley, Luca Reggio, Colin Riba, Sylvain Salvati, Simon Santschi, Alexis Saurin,
Sylvain Schmitz, Ian Shillito, Mahsa Shirmohammadi, Benjamin Steinberg, Michelle Sweering, Ralf
Treinen, Constantine Tsinakis, Yde Venema, Noam Zeilberger: Thank you.
Specifically regarding this HDRmanuscript, there is one colleaguewhom Iwould like to thank a sec-

ond time: Olivier Carton, thank you for all your encouragement during the writing of this manuscript,
and also for your help with navigating the administrative steps required to formally defend it.
If this text fulfills its main purpose, it will officially allow me to direct research. In addition to those

already mentioned above, I would like to thank all the Master, PhD students and postdocs who have
so far allowed an un-habilitated researcher like myself to advise them on their research.
I would also like to thank both the institute for research in the foundations of computer science, IRIF,

and the computer science teaching and research department, UFR d’informatique, of Université Paris
Cité, and all members of these institutions, for providing me with such a welcoming and inspiring
working environment. My special thanks go to the administrative staff of both institutions, who
have provided crucial support for many tasks since my arrival, helping me to free up time to do
research. Omur Avci, Thomas Beraud, Juliette Calvi, Natalia Hacquart, Marie-José Iarifina, Houy
Kuoy, Maximilien Lesellier, Eva Ryckelynck, Jemuel Samtchar, Marie-Laure Susairaj: Thank you.

1The main text contains substantial original parts, and also draws from articles published by myself with various collab-
orators. I provide references to the relevant articles at the start of each section, and then freely cite from them without
repeating the reference at every citation.

vii

I gratefully acknowledge the financial support received from the European Research Council (ERC)
under the EuropeanUnion’sHorizon 2020 research and innovation program, grant agreements #655941
and #670624, and from the Agence Nationale de Recherche project ANR-23-CE48-0012.
I thank the reviewers of this manuscript, Jean Goubault-Larrecq, Victoria Gould, and Dexter Kozen,

for accepting to perform this task, in the middle of summer, no less, and for producing such thoughtful
and detailed reports in the fall. I would also like to thank Valérie Berthé, Paul-André Melliès, Carlos
Simpson, and Christine Tasson, for accepting to be members of the jury of this manuscript’s defense,
just before the start of winter.
Finally, I thank my family and friends for their love and support. Even if this document may contain

some things that you do not understand, you all contributed greatly to its existence.

Paris, December 2024

1 Monoids: Profiniteness, models and
pointlikes

Whereas groups are gems, all of them precious, the garden of semigroups is filled with weeds. One
needs to yank out these weeds to find the interesting semigroups.

– J. Rhodes & B. Steinberg [148, p. 2]

The algebraic structure of a monoid, that is, a set equipped with an associative binary operation
and a neutral element for it, is central to the study of finite words. Indeed, the set of finite words
over a fixed alphabet Σ, denoted Σ∗, carries the structure of a free monoid over Σ, namely, the binary
operation of concatenation, with neutral element the empty word, 𝜖. A foundational fact in the study
of automata is that a set 𝐿 of finite words over a finite alphabet Σ is recognizable by a finite automaton
if, and only if, there exists a congruence relation 𝜃 on Σ∗ such that the quotient Σ∗/𝜃 is finite and 𝐿 is
a union of 𝜃-classes. A set 𝐿 that satisfies these conditions is called regular, referring to the fact that
such sets are also exactly the ones definable using regular expressions.1

Our focus in this chapter will be on the interplay between monoids, regular sets, and their defin-
ability using logic. Here, a logical formula is used to define a language, namely, the set of those finite
words which satisfy the formula. To give an example, the formula

∃𝑥. ((∀𝑦. 𝑥 ≤ 𝑦) ∧ 𝑎(𝑥)) (1.1)

is interpreted in a finite word as: “there exists a position, 𝑥 , such that all other positions, 𝑦, come after
it, and the letter at position 𝑥 is 𝑎”. Thus, the formula in Eq. (1.1) defines the language 𝑎Σ∗, that is, the
set of finite, non-empty words whose first letter is 𝑎.

In this way, logics can be used as a measure of the complexity of a set of finite words: If a set 𝐿
is definable in a ‘simple’ logic, then it is understood to have ‘low’ complexity. More precisely, we
will be interested in sets definable inmonadic second-order logic over finite linear orders, and its first-
order fragment, to be defined in more detail in Section 1.1 below. Monadic second-order definable sets
turn out to be precisely the regular sets of finite words, and thus give yet another characterization of
regular sets, in addition to those via automata, monoids, and regular expressions already mentioned.
Among the monadic second-order definable sets, the first-order definable sets can be characterized
as precisely those which can be recognized by a finite monoid containing no non-trivial subgroups;
again, more precise definitions and statements will be given in Section 1.1.2

1The facts stated in this paragraph are sometimes collectively referred to as the Kleene-Schützenberger theorem, as they are
rooted in [106, 157]. See [137, Ch. 1] for a modern account, and [135] for details about the history.

2The history of the results in this paragraph is complex, and explained in depth in [138, 165, 170]. In short, the monadic
second-order result goes back to [27, 49, 171], while the first-order result is essentially due to [156], taking into account
also the works [126, 127].

1

1 Monoids: Profiniteness, models and pointlikes

Historically, these results were the starting point for a study of decidability results at the interface of
logic and regular languages. In this context, themembership problem for a class  of regular languages
is the computational problem that asks, given as input a regular language 𝐿, to determine whether or
not 𝐿 belongs to . For instance, when  is the class of first-order definable languages, the above
characterization via monoids leads to a simple algorithm to decide the membership problem for :
Given 𝐿, first compute a minimal finite monoid recognizing 𝐿, and then check whether or not it
contains non-trivial subgroups. This minimal monoid is called the syntactic monoid for 𝐿, and it is
classical [144] that this monoid can indeed be computed from a description of 𝐿, be it via an automaton,
regular expression, or monadic second-order formula.3

A generalization of the membership problem is the separation problem for a class , which asks,
given two disjoint regular sets 𝐿1 and 𝐿2, to decide whether or not there exists a set 𝐾 ∈  such
that 𝐿1 ⊆ 𝐾 and 𝐿2 ∩ 𝐾 = ∅. In algebraic terms, this problem is closely related to the question of
determining whether or not a given subset of a finite monoid is pointlike with respect to the class ,
see further Section 1.2. On the logic side, separation problems are closely related to interpolation, in
the sense of Chapter 2. I will come back to this at the end of Section 3.3.
In this chapter, I will explain a number of my contributions to the theory of finite and profinite

monoids, most of them developed between 2016 and 2018, during my postdoc with B. Steinberg at
City College of City University of New York:

1. A model-theoretic point of view on pro-aperiodic monoids, with an application to deciding
equality of 𝜔-terms (Section 1.1);

2. Decidability of separation for logics defined via groups, using pointlike sets (Section 1.2).

Before coming to these results, I will briefly recall some basics on the theory of profinite monoids and
logic on words, which I need in the rest of the chapter.

1.1 Proaperiodic monoids and saturated models

The correspondence between first-order definable sets and aperiodic monoids was a starting point
for a study of the general correspondence between classes of finite monoids and classes of regular
languages, now referred to as Eilenberg pseudovariety theory [48]. Here, a pseudovariety is a class of
finite monoids closed under homomorphic images, submonoids, and finite products. Profinite monoids
naturally emerge as the canonical free objects for pseudovarieties, and provide the appropriate lan-
guage for expressing equational properties of classes of finite monoids. A topological monoid is a
monoid equipped with a topology such that the multiplication on 𝑀 is continuous when regarded as
a function from 𝑀 ×𝑀 to 𝑀 . A topological monoid is profinite if, and only if, its underlying topology
is Boolean4, by which we mean: compact, Hausdorff, and zero-dimensional, i.e., having a basis con-
sisting of sets that are both closed and open (clopen).5 Note that any finite monoid is profinite when
3For more about syntactic monoids, see [138], and see [60, Sec. 8.1] for a textbook account of the connection between
syntactic monoids and duality theory, on which the work in Section 1.1 below builds.

4Boolean spaces are also known as Stone spaces in the literature.
5The definition of profinite monoid we give here is the one that is easiest to state, but it does not generalize to other
algebraic structures. The generally correct definition says that an algebra is profinite when it is an inverse limit of finite
discrete algebras in the category of topological algebras. In general, one then needs to carefully distinguish between
profinite algebras and topological algebras whose underlying topology is Boolean, since the first class may be strictly

2

1.1 Proaperiodic monoids and saturated models

equipped with the discrete topology, and, since this is the only Hausdorff topology on a finite set, we
will always tacitly assume that the topology on a finite monoid is discrete.

Definition 1.1. A free profinite monoid over Σ is an embedding of Σ into a topological monoid, Σpro,
such that, for every profinite monoid 𝑀 and function ℎ∶ Σ → 𝑀, there exists a unique continuous
monoid homomorphism 𝑓 ∶ Σpro → 𝑀 that extends 𝑓 , as in the following diagram:

Σpro

Σ 𝑀

𝑓

𝑓

Other traditional notations for Σpro are ΩΣ𝐌 and Σ̂∗. For general abstract reasons, a free profinite
monoid is unique up to an isomorphism of topological monoids, see, e.g., [60, Exercise 8.2.9]. From
the above abstract definition, it is not clear a priori that the free profinite monoid Σpro exists. There
are a number of ways to construct Σpro; notably, as a completion of Σ∗ under an appropriate metric or
uniform structure, see, e.g., [137, Ch. 17]. For what we will do below, however, the most convenient
construction of Σpro is as spec RegΣ, i.e., the Stone dual space of the Boolean algebra of regular lan-
guages over the alphabet Σ, equipped with a continuous multiplication. Here, recall that the Stone dual
space spec𝐵 of a Boolean algebra 𝐵 is the set of ultrafilters, equipped with the Boolean topology that
is generated by declaring each set 𝑎̂ def= {𝑥 ∈ spec𝐵 | 𝑎 ∈ 𝑥}, for 𝑎 ∈ 𝐵, to be open.6 In terms of duality
theory for Boolean algebras with operators, one can define this multiplication as dual to a ‘residuation
structure’ on the regular languages, as was proved in [62].7 I will briefly recall one concrete way to
do this, which we explained in more detail in [60, Sec 8.2].
First note that the free monoid Σ∗ embeds into spec RegΣ via the map that sends a finite word 𝑤 to

the ultrafilter of regular sets that contain the word 𝑤. The image of this embedding Σ∗ ↪ spec RegΣ

is a dense subspace. It follows that, for any homomorphism ℎ∶ Σ∗ → 𝑀 , with 𝑀 a finite monoid,
there exists a unique continuous function ℎ∶ spec RegΣ → 𝑀 . Now, one can prove that, for any
ultrafilters 𝑢 and 𝑣 of RegΣ, there is a unique ultrafilter 𝑢 ⋅ 𝑣 of RegΣ such that, for every ℎ∶ Σ∗ ↠ 𝑀 ,
ℎ(𝑢 ⋅ 𝑣) = ℎ(𝑢) ⋅ ℎ(𝑣) [60, Cor. 8.37]. This defines a continuous monoid multiplication on spec RegΣ, and
we have the following; a detailed proof is given in [60, Lem. 8.38].

Theorem 1.2. The topological monoid spec RegΣ is the free profinite monoid over Σ:

Σpro ≅ spec RegΣ .

Our aim in this section is to use the point of view of Theorem 1.2 to study free pro-aperiodicmonoids
via model theory.

contained in the second. In the case of monoids, however, the two classes coincide. For more about the general case,
see, e.g. [10].

6In this chapter, we only use Stone duality for Boolean algebras. We will say more about Stone duality, for more general
lattice-based structures than Boolean algebras, in Section 2.1.

7The importance of profinite monoids in automata theory and finite monoid theory was first highlighted by Almeida,
starting in the late 1980s; see his influential book [3], and the monograph [148], for more background. In more recent
years, a number of authors have made explicit use of duality theory to redevelop and expand the foundations of the
profinite approach to studying varieties of languages; most closely related to our work here are [62] and [148, Chapter 8],
also see [25].

3

1 Monoids: Profiniteness, models and pointlikes

Logical definability and recognizability. We first recall how monadic second-order logic can be
used to capture the notion of regularity. We will then focus on the subclass of regular sets definable in
first-order logic, which turn out to be exactly the aperiodic-recognizable ones, see Theorem 1.5 below.
Let 𝑥̄ and 𝑃 be two sequences of symbols, whose elements will be called first- and second-order

variables, respectively. An atomic formula is any expression which is either of the form 𝑃(𝑥), where
𝑥 is a symbol in 𝑥̄ and 𝑃 is a symbol in 𝑃 , or of the form 𝑥 < 𝑦, where both 𝑥 and 𝑦 are symbols
in 𝑥̄ . A first-order formula is defined recursively to be either an atomic formula, or an expression of
the form 𝜙 ∨ 𝜓, ¬𝜙, or ∃𝑥.𝜙, where 𝜙 and 𝜓 are first-order formulas and 𝑥 is a first-order variable.
A monadic second-order formula is defined in the same way, further allowing monadic second-order
quantification, ∃𝑃.𝜙, where 𝑃 is a second-order variable. A variable is free in a formula 𝜙 if it does not
occur under the scope of a quantifier. The set of first-order formulas with free variables among 𝑥̄ , 𝑃
is denoted FO(𝑥̄, 𝑃) and the analogous set of monadic second-order formulas is denoted MSO(𝑥̄, 𝑃). A
first-order sentence is a first-order formula in which no first-order variable 𝑥 occurs freely; we denote
by FO(𝑃) the set of first-order sentences with free second-order variables among 𝑃 .8

We recall how monadic second-order formulas are naturally interpreted in finite words. This re-
quires first defining some notation for the relevant alphabets and maps between them. For 𝑃 a finite
sequence of second-order variables, we define Σ𝑃

def= 𝟐𝑃 , that is, a letter 𝑎 ∈ Σ𝑃 is a 𝑃-indexed string
of bits. Note that, then, a word 𝑤 in (Σ𝑃)∗ contains two distinct levels of sequences: a bit-string
of length |𝑃 | gives a single letter, and a sequence of such letters gives a word. For instance, when
𝑃 = (𝑃, 𝑄, 𝑅), we have the word 011 100 which has length 2, and whose letter at the second position
is (𝑃 ↦ 1, 𝑄 ↦ 0, 𝑅 ↦ 0).

If 𝑄̄ is a subsequence of 𝑃 , then for any 𝑎 ∈ Σ𝑃 , we write 𝑎|𝑄̄ for the restriction of the string 𝑎 to
the domain 𝑄̄. Thus, we get a function (−)|𝑄̄ ∶ Σ𝑃 → Σ𝑄̄ , which extends uniquely to a letter-to-letter
homomorphism (Σ𝑃)∗ → (Σ𝑄̄)∗, and which we also denote by (−)|𝑄̄ . Now, when 𝑥̄ is a set of first-order
variables and 𝑤 ∈ (Σ𝑃)∗, by a valuation of 𝑥̄ in 𝑤 we mean a function that associates with every 𝑥 in
𝑥̄ a position 𝑣(𝑥) in 𝑤. Write 𝑊(𝑥̄, 𝑃) for the set of words-with-valuations, that is, pairs (𝑤, 𝑣) where
𝑤 ∈ (Σ𝑃)∗ and 𝑣 is a valuation of 𝑥̄ in 𝑤. With these notations in place, we define a semantics function

J−K∶ MSO(𝑥̄, 𝑃) → (𝑊 (𝑥̄, 𝑃)) ,

as follows. For the atomic cases, (𝑤, 𝑣) ∈ J𝑃(𝑥)K if, and only if, the index 𝑃 bit of 𝑤 at position 𝑣(𝑥)
is 1, and (𝑤, 𝑣) ∈ J𝑥 < 𝑦K if, and only if, the position 𝑣(𝑥) is to the left of the position 𝑣(𝑦). The cases
∨, ¬, and ∃ are standard, by induction: J𝜙 ∨ 𝜓K def= J𝜙K ∪ J𝜓K, J¬𝜙K def= J𝜙Kc, and (𝑤, 𝑣) ∈ J∃𝑥.𝜙K if, and
only if, there exists a position 𝑝 in 𝑤 such that (𝑤, 𝑣𝑥↦𝑝) ∈ J𝜙K, where 𝑣𝑥↦𝑝 denotes the modification
of 𝑣 that sends the variable 𝑥 to 𝑝. For the case of a second-order quantifier, we extend the alphabet:
(𝑤, 𝑣) ∈ J∃𝑄.𝜙K if, and only if, there exists a word 𝑤̃ ∈ (Σ𝑃∪{𝑄})∗ such that (𝑤̃, 𝑣) ∈ J𝜙K and 𝑤̃|𝑃 = 𝑤.
A subset 𝐿 of 𝑊(𝑥̄, 𝑃) is called monadic second-order definable if it lies in the image of the function

J−K. Note that, in particular, 𝑊(∅, 𝑃) is just the set of finite words over the alphabet Σ𝑃 , so that we
can speak of monadic second-order definable sets of finite words over Σ𝑃 . In order for this definition
to be meaningful when Σ is an arbitrary finite alphabet, we will always tacitly assume that Σ comes
with an arbitrary fixed injection Σ ↪ Σ𝑃 , for some sufficiently large finite sequence of variables 𝑃 .

8We use some common macro formulas: We write 𝑥 = 𝑦 for ¬((𝑥 < 𝑦) ∨ (𝑦 < 𝑥)), 𝑥 ≤ 𝑦 for (𝑥 < 𝑦) ∨ (𝑥 = 𝑦), 𝜙 ∧ 𝜓 for
¬(¬𝜙 ∨ ¬𝜓), 𝜙 → 𝜓 for ¬𝜙 ∨ 𝜓, 𝜙 ↔ 𝜓 for (𝜙 ∧ 𝜓) ∨ (¬𝜙 ∧ ¬𝜓), and ∀𝑥.𝜙 for ¬∃𝑥.¬𝜙.

4

1.1 Proaperiodic monoids and saturated models

This allows us to regard, for any 𝑎 ∈ Σ, the expression 𝑎(𝑥) as a formula which is true exactly when
the letter at position 𝑥 is 𝑎; more formally, 𝑎(𝑥) is a macro for ⋀𝑃∶𝑎(𝑃)=1 𝑃(𝑥) ∧ ⋀𝑄∶𝑎(𝑄)=0 ¬𝑄(𝑥). We
then also use the notations MSO(Σ) and FO(Σ) for the set of monadic second-order and first-order
sentences over the alphabet Σ. We also note explicitly that the empty word is allowed as a model. The
set of non-empty words is first-order definable, for example by the sentence ∃𝑥.(𝑃(𝑥) ∨ ¬𝑃(𝑥)).

Theorem 1.3 ([27]). A set of finite words is monadic second-order definable if, and only if, it is regular.

Example 1.4. The semantics of the formula ∃𝑥. ((∀𝑦. 𝑥 ≤ 𝑦) ∧ ¬𝑃(𝑥) ∧ 𝑄(𝑥)) is the set of non-empty
words in (Σ{𝑃,𝑄})∗ such that the letter at the first position is the bit-string 01. Let us now define the
formulas

𝐹(𝑥) def= ∀𝑡. 𝑥 ≤ 𝑡, 𝐿(𝑦) def= ∀𝑡. 𝑡 ≤ 𝑦, and

𝑆(𝑥, 𝑦) def= (𝑥 < 𝑦) ∧ ∀𝑡. ¬(𝑥 < 𝑡) ∨ ¬(𝑡 < 𝑦).

Note that (𝑤, 𝑣) ∈ J𝐹(𝑥)K if and only if 𝑣(𝑥) is the first position in 𝑤, (𝑤, 𝑣) ∈ J𝐿(𝑦)K if and only if 𝑣(𝑦)
is the last position in 𝑤, and (𝑤, 𝑣) ∈ J𝑆(𝑥, 𝑦)K if and only if 𝑣(𝑦) is the successor position of 𝑣(𝑥). Now
consider the sentence

𝐸 def= ∃𝑋. [∃𝑥. (𝑋(𝑥) ∧ 𝐹(𝑥))] ∧ [∃𝑦. (𝑋(𝑦) ∧ 𝐿(𝑦))] ∧ [∀𝑥. ∀𝑦. 𝑆(𝑥, 𝑦) → (𝑋(𝑥) ↔ ¬𝑋(𝑦))] .

The sentence 𝐸 says: ‘there exists a subset, 𝑋 , which contains the first and the last position, and which
contains a position 𝑥 if and only if it does not contain the successor position of 𝑥’. Thus, 𝐸 defines the
set of words of odd length. One may similarly define, for example, the set of words 𝑤 in (Σ{𝑃,𝑄})∗ such
that the bit for 𝑃 is 1 at an odd number of positions in 𝑤.

In light of Theorem 1.3, it is now natural to ask which regular sets can be defined by a first-order for-
mula. The answer comes from the following foundational theorem of Schützenberger [156], combined
with the logical point of view [126, 127].

Theorem 1.5. A set of finite words is first-order definable if, and only if, it can be recognized by a finite
aperiodic monoid.

Here and in what follows, when Σ is a finite alphabet and 𝐿 ⊆ Σ∗, we say that a monoid𝑀 recognizes
𝐿 if there is a homomorphism ℎ∶ Σ∗ → 𝑀 such that ℎ−1(ℎ[𝐿]) = 𝐿. A subgroup 𝐺 of a monoid𝑀 is, by
definition, a subset closed under the multiplication of 𝑀 , but not necessarily containing the neutral
element, so that 𝐺 with the restricted multiplication is a group. A monoid is called aperiodic if all of
its subgroups are trivial.

Example 1.6. To illustrate the above definitions, we consider the set 𝐸 of words of odd length in
the alphabet Σ def= {𝑎}. We first show how to recognize it, non-optimally, with a submonoid of the
monoid End(𝟑) of functions from the set 𝟑 = {0, 1, 2} to itself, under function composition. Let 𝑎 be
the following element of End(𝟑) (see Figure 1.1):

𝑎 def= (0 ↦ 1, 1 ↦ 0, 2 ↦ 1).

The submonoid 𝑀 of End(𝟑) that is generated by 𝑎 contains the identity function, 𝑒, and one further
function, 𝑎2 = (0 ↦ 0, 1 ↦ 1, 2 ↦ 0). Write ℎ for the homomorphism from {𝑎}∗ to 𝑀 which sends, for

5

1 Monoids: Profiniteness, models and pointlikes

0 1 2
𝑎

𝑎
𝑎

Figure 1.1: A deterministic automaton on three states and one letter.

𝑛 ≥ 0, a word 𝑎𝑛 to the 𝑛-fold composition of 𝑎, that is, ℎ sends the empty word to 𝑒, ℎ(𝑎𝑛) = 𝑎 if 𝑛 is
odd and ℎ(𝑎𝑛) = 𝑎2 if 𝑛 is even and non-zero. Thus, 𝐸 = ℎ−1({𝑎}), and the homomorphism ℎ recognizes
𝐸. We now explain why this particular recognizing monoid 𝑀 is non-optimal: While 𝑀 has three
elements, the two-element subgroup {𝑎, 𝑎2} could also be used to recognize this same set 𝐸, modifying
ℎ to ℎ′ which sends the empty word to 𝑎2, and noting that ℎ′ is still a homomorphism. Using a little
more theory of finite monoids, which we omit here, see e.g. [137, Ch. 1], one may establish that the
syntactic monoid of 𝐸 is isomorphic to the two-element group, and thus, by Theorem 1.5, 𝐸 cannot be
first-order definable: any finite monoid recognizing 𝐸must contain an even subgroup, and is therefore
not aperiodic.

A logical view on the free proaperiodic monoid. In Proposition 1.2, we saw that elements of
Σpro, which are sometimes called profinite words, can be realized as ultrafilters of regular sets. In the
rest of this section, I report on our work in [86, 87], where we gave a model-theoretic perspective
on profinite monoids. Since model theory is most readily applicable to first-order logic, in view of
Theorem 1.5 we restrict our attention in this section to aperiodic monoids.9 A proaperiodic monoid
is a profinite monoid which is aperiodic. The free proaperiodic monoid generated by a finite set Σ is
a proaperiodic monoid Σap containing Σ such that any function 𝑓 ∶ Σ → 𝑀 , with 𝑀 a finite aperi-
odic monoid, extends uniquely to a continuous homomorphism 𝑓 ∶ Σap → 𝑀 . The free proaperiodic
monoid is unique up to topological isomorphism, and the same extension property still holds if in
the previous sentence 𝑀 is replaced by an arbitrary proaperiodic monoid. Let us now write APΣ for
the Boolean algebra of regular languages which are recognizable by a finite aperiodic monoid. An
aperiodic version of Theorem 1.2, which can be proved in the same way, is the following.

Theorem 1.7. The topological monoid spec APΣ is the free proaperiodic monoid over Σ.

To give a logical perspective on Theorem 1.7, recall the semantics function, which associates in
particular with any first-order sentence 𝜙 ∈ FO(Σ) a set of words J𝜙K in the alphabet Σ. Theorem 1.5
tells us that the image of this function is exactly APΣ. Write 𝜙 ∼FO 𝜓 if, and only if, J𝜙K = J𝜓K. The
first isomorphism theorem of Boolean algebras yields

FO(Σ)/∼FO ≅ APΣ . (1.2)

The Boolean algebra on the left is a special case of the well-known construction in logic of the
Lindenbaum-Tarski algebra with respect to the following first-order theory:

𝑇 finΣ
def= {𝜙 ∈ FO(Σ) | J𝜙K = Σ∗} ,

9After publication of our work in [84, 86], some of the results we give here were extended to monadic second-order logic
[111, 112], and also to larger classes of possibly non-aperiodic profinite monoids in [7]; further see Section 1.3.

6

1.1 Proaperiodic monoids and saturated models

that is, 𝑇 finΣ is the set of first-order sentences that hold in every finite word. We will axiomatize and
further describe 𝑇 finΣ below.

The dual space of the Lindenbaum-Tarski algebra, spec(FO(Σ)/∼FO), is also well-known in logic:
points of this space are complete theories extending 𝑇 finΣ , also known as 0-types. A more concrete
view on these points can be given by considering models of 𝑇 finΣ , which, following usual terminology
in model theory, will be called pseudofinite words. In our setting, a model is a relational structure
𝑊 = (|𝑊 |, <𝑊 , (𝑊𝑎)𝑎∈Σ), where |𝑊 | is any set, <𝑊 is a binary relation on |𝑊 |, and each 𝑊𝑎 is a unary
relation, that is, a subset of |𝑊 |. Note that the above definition of semantics for first order formulas in
fact never used that the base order of a word was finite, so that any first-order sentence has a well-
defined truth value in any given model. We say that a model 𝑊 is a pseudofinite word over Σ if all
sentences in 𝑇 finΣ are true in 𝑊 . Two models 𝑊 and 𝑊 ′ are called elementarily equivalent, notation
𝑊 ≡ 𝑊 ′, if exactly the same first-order sentences are true in𝑊 and𝑊 ′. Wewill abbreviate ‘elementary
equivalence class’ to ‘class’.
With this terminology in place, one may now use the completeness theorem of first-order logic to

prove that points of spec(FO(Σ)/∼FO) exactly correspond to classes of pseudofinite words. Applying
the Stone duality functor spec to both sides of the Boolean algebra isomorphism Eq. (1.2), we obtain a
homeomorphism between the space of classes of pseudofinite words and the free proaperiodic monoid
Σap, see [84, Thm. 2.4].
Note that, for now, this is a homeomorphism, but it is not clear yet how to interpret the monoid

multiplication on the space of classes of pseudofinite words. To do so, we need to understand more
concretely what a pseudofinite word is. As a first approximation, a pseudofinite word is at least a
Σ-labeled pseudofinite linear order, i.e., a model (𝑊 , <𝑊 , (𝑊𝑎)𝑎∈Σ) in which <𝑊 is a discrete linear order
with endpoints, and (𝑊𝑎)𝑎∈Σ is a partition10 of the set 𝑊 . We will call a Σ-labeled pseudofinite linear
order a Σ-word. In a Σ-word, we will write 𝑊(𝑖) for the unique letter 𝑎 ∈ Σ such that 𝑖 ∈ 𝑊𝑎. The
following is an example of a Σ-word that is not a pseudofinite word.

Example 1.8. Let 𝑊 be the word over the alphabet {𝑎, 𝑏} with underlying order ℕ + ℕop, where
𝑊(𝑖) = 𝑎 for all 𝑖 ∈ ℕ and 𝑊(𝑖) = 𝑏 for all 𝑖 ∈ ℕop; visually, 𝑊 is the word

𝑎𝑎𝑎𝑎… …𝑏𝑏𝑏𝑏.

The sentence
∃𝑥.𝑎(𝑥) → ∃𝑥.[𝑎(𝑥) ∧ ∀𝑦.(𝑦 > 𝑥 → ¬𝑎(𝑦))]

expressing ‘if there exists an 𝑎-position, then there exists a last such’ is true in every finite word, and
therefore lies in 𝑇 finΣ , but it fails to hold in 𝑊 . Thus, 𝑊 is not pseudofinite.

Extending the idea of Example 1.8, we show in [84, Thm. 4.1] that the theory 𝑇 finΣ is not finitely
axiomatizable. The reason for this is that 𝑇 finΣ contains a first-order induction principle, namely, for
every first-order formula 𝜙(𝑥) in one free variable, the first-order sentence

Last𝜙∶ ∃𝑥.𝜙(𝑥) → ∃𝑥.[𝜙(𝑥) ∧ ∀𝑦.(𝑦 > 𝑥 → ¬𝜙(𝑦))]

10Here, and in what follows, we call a collection of subsets of a set𝑊 a partition if⋃ = 𝑊 and any pair of distinct sets
in  are pairwise disjoint. Note that, for us, a partition may have the empty set as one of its elements.

7

1 Monoids: Profiniteness, models and pointlikes

is in 𝑇 finΣ . This sentence expresses the fact that, in a finite word, every first-order property that happens
at least once, must happen a last time. The theory 𝑇 finΣ is axiomatized by adding to the theory of
Σ-labeled pseudofinite linear orders the set of sentences Last𝜙, where 𝜙 ranges over all first-order
formulas with one free variable [84, Prop. 4.2].

Multiplication and substitution of pseudofinite words. We established above that Σap, the free
proaperiodic monoid, is homeomorphic to the space of classes of pseudofinite words, we identify the
two from now on. The first main advantage of viewing Σap in this way is that the monoid structure
on this topological space becomes more tangible than when working with the abstract definition of
Σap, as I will illustrate now.
Suppose that 𝑉 is a word over a finite alphabet Δ, and that for each 𝑏 ∈ Δ, 𝑈𝑏 is a word over a finite

alphabet Σ. We obtain a new word 𝑉 [𝑏/𝑈𝑏] over Σ by substituting the word 𝑈𝑏 for each occurrence of
the letter 𝑏 in 𝑉 ; see Figure 1.2.

𝑉

𝑉 [𝑏/𝑈𝑏]
𝑈𝑏

𝑏

𝑈𝑏′

𝑏′…

…

Figure 1.2: Substituting (𝑈𝑏)𝑏∈𝐵 into 𝑉

Formally, the substitution of the Σ-words (𝑈𝑏)𝑏∈Δ into the Δ-word 𝑉 is the Σ-word 𝑊 = 𝑉 [𝑏/𝑈𝑏]
defined as follows.

• The underlying order of 𝑊 is the lexicographic order on the disjoint union |𝑊 | ∶= ⨆𝑖∈|𝑉 | |𝑈𝑉 (𝑖)|,
i.e.,

(𝑖, 𝑗) <𝑊 (𝑖′, 𝑗 ′) def⟺ 𝑖 <𝑉 𝑖′, or 𝑖 = 𝑖′ and 𝑗 <𝑈𝑉 (𝑖) 𝑗 ′.

• The letter at position (𝑖, 𝑗) in 𝑊 is the letter at position 𝑗 in 𝑈𝑉 (𝑖).

There are two important special cases of substitution. If 𝑈0 and 𝑈1 are Σ-words, then the concatenation
𝑈0 ⋅ 𝑈1 of 𝑈0 and 𝑈1 is defined as the substitution of (𝑈𝑏)𝑏∈{0,1} into the {0, 1}-word 01. If 𝑈 is a Σ-word
and 𝜆 is a discrete linear order with endpoints, then the 𝜆-power 𝑈 𝜆 of 𝑈 is defined as the substitution
of 𝑈𝑏 = 𝑈 into the unique {𝑏}-word with underlying order 𝜆. We then prove the following crucial
proposition [84, Prop. 3.7]:

Proposition 1.9. Let (𝑈𝑏)𝑏∈Δ be a Δ-indexed collection of pseudofinite Σ-words. Then the function
𝑓 ∶ Δap → Σap which sends an element [𝑉]≡ of Δap to [𝑉 [𝑏/𝑈𝑏]]≡ is a well-defined continuous homo-
morphism. Moreover, any continuous homomorphism from Δap to Σap arises in this manner.

Before commenting on the proof of Proposition 1.9, let us draw two important consequences. First,
it follows from the fact that concatenation is a special case of substitution that the multiplication on
Σap is precisely concatenation of pseudofinite words, which is well-defined on classes. Thus, we obtain
the following result.

8

1.1 Proaperiodic monoids and saturated models

Theorem 1.10. The topological monoid of classes of pseudofinite words, under concatenation, is the free
proaperiodic monoid Σap over Σ.

As a further consequence of Proposition 1.9, we obtain a concrete description of the 𝜔-power oper-
ation on Σap. To explain what this is, recall first that, in any finite monoid 𝑀 , any element 𝑥 ∈ 𝑀 has
an idempotent power, that is, there exists 𝑛 ≥ 1 such that 𝑥2𝑛 = 𝑥𝑛. Moreover, the set {𝑥𝑚 | 𝑚 ≥ 𝑛}
will always form a cyclic subgroup of 𝑀 , and thus, if 𝑀 is aperiodic, then 𝑥𝑛 = 𝑥𝑛+1. By general
topological principles, these arguments transfer to any profinite monoid, that is, for any element 𝑥 in
a profinite monoid 𝑀 , there exists a unique idempotent element in the closure of {𝑥𝑛 | 𝑛 ≥ 1}. This
unique idempotent is called the 𝜔-power of 𝑥 and denoted 𝑥𝜔. The 𝜔-power operation can be used
to define classes of monoids via profinite identities; for instance, aperiodic finite monoids are exactly
those satisfying the profinite identity 𝑥𝜔 = 𝑥𝜔+1. In fact, a profinite version of Birkhoff’s theorem, due
to [147], says that any pseudovariety can be defined by profinite identities; see, e.g., [3, Thm. 3.5.1],
for a proof.

Applying Proposition 1.9 in the specific case of a 𝜆-power, with 𝜆 any infinite pseudofinite linear
order, allows us to calculate the element 𝑥𝜔. For example, if 𝑥 is the finite word 𝑎𝑏, then the element
(𝑎𝑏)𝜔 of Σap is the class of the pseudofinite word depicted visually as

𝑎𝑏𝑎𝑏𝑎𝑏 … 𝑎𝑏𝑎𝑏𝑎𝑏 .

One may use these concrete incarnations of product as concatenation and 𝜔-power as substitution
into an infinite order to reason combinatorially about equations in Σap. For example, an equation such
as (𝑥𝑦)𝜔𝑥 = 𝑥(𝑦𝑥)𝜔 is now easily seen to be valid for any 𝑥, 𝑦 ∈ Σap: If 𝑋 and 𝑌 , respectively, are
pseudofinite words in the classes 𝑥 and 𝑦, then one verifies that the pseudofinite words that realize
either side of the equation are isomorphic. We exploit this idea further below to obtain a proof of
decidability of the word problem for aperiodic 𝜔-terms.
We now comment on the proof of Proposition 1.9, proved in detail in [84, Prop. 3.7]. An important

ingredient in that proof is the standard logic technique of Ehrenfeucht-Fraïssé games with a bounded
number of rounds. Without going into the details of this proof here, we note that these games essen-
tially describe the elementary equivalence relation ≡ as the intersection of a decreasing sequence of
finite-index equivalence relations ≡𝑘 , with 𝑘 ∈ ℕ, where two models 𝑊 and 𝑊 ′ are equivalent in ≡𝑘
if, and only if, the same first-order sentences of quantifier rank ≤ 𝑘 are true in 𝑊 and 𝑊 ′. Here, the
quantifier rank of a formula 𝜙 is the maximum nesting depth of quantifiers in 𝜙. Ehrenfeucht-Fraïssé
games give an inductive way of characterizing the relation ≡𝑘+1 in terms of the relation ≡𝑘 . This al-
lows for a concrete approach to various general properties. For instance, one may show by induction
on 𝑘 that, for any pseudofinite words 𝑈 , 𝑈 ′, 𝑉 , if 𝑈 ≡𝑘 𝑈 ′, then 𝑈𝑉 ≡𝑘 𝑈 ′𝑉 . The proof of Proposi-
tion 1.9 generalizes this to arbitrary substitutions. As another application of the use of the sequence of
relations ≡𝑘 , our strategy to prove that 𝑇 finΣ is not finitely axiomatizable [84, Thm. 4.1] is to construct
a sequence of non-pseudofinite models 𝑊𝑘 such that, for every 𝑘, 𝑊𝑘 is ≡𝑘-equivalent to some finite
word.
In more algebraic terms, this sequence of equivalence relations ≡𝑘 gives a chain of finite aperiodic

monoids Σap
𝑘 , consisting of the ≡𝑘-classes of pseudofinite words. The free proaperiodic monoid Σap is

then realized as the limit, in the category of topological monoids, of the inverse chain of finite discrete

9

1 Monoids: Profiniteness, models and pointlikes

monoids
Σap ↠ ⋯ ↠ Σap

𝑘+1 ↠ Σap
𝑘 ↠ ⋯ ↠ Σap

0 . (1.3)

In terms of finite semigroups, the finite monoids Σap
𝑘 also admit a natural description: for every 𝑘, Σap

𝑘
is the relatively free monoid on Σ of the 𝑘-fold semidirect product of the pseudovariety of semilattices
with itself; see [84, Rem. 3.6] for more details.

Saturated pseudofinite words. The notion of saturated model is fundamental in model theory.
Our idea here is to employ it in the specific case of pseudofinite models. I only give the relevant
definitions in that case, referring to [84, App. A] for detailed proofs that our terminology indeed
corresponds to the standard one in model theory.
For any pseudofinite Σ-word 𝑈 and position 𝑖 in 𝑈 , we call the type11 of 𝑖 in 𝑈 the triple 𝑡𝑈 (𝑖) def=

([𝑃]≡, 𝑈 (𝑖), [𝑆]≡), where 𝑃 is the prefix of 𝑈 until 𝑖, and 𝑆 is the suffix of 𝑈 after 𝑖, both non-inclusive.
More formally, 𝑃 is the pseudofinite word based on the set {𝑗 ∈ |𝑈 | | 𝑗 <𝑈 𝑖}, equipped with the
relations that are the restrictions of the ones in 𝑈 , and similarly for 𝑆 – one obtains from the fact
that 𝑈 is pseudofinite that 𝑃 and 𝑆 are pseudofinite, too. Thus, 𝑖 ↦ 𝑡𝑈 (𝑖) defines a function from 𝑈
to Σap × Σ × Σap. We call the image of this function the set of types realized by 𝑈 . The set of types
consistent with 𝑈 is the set of types that are realized by some pseudofinite word 𝑉 such that 𝑈 ≡ 𝑉 .
One may prove that the set of types consistent with 𝑈 is in fact the topological closure of the set of
types realized by 𝑈 [84, Lem. 5.3]. We call the pseudofinite Σ-word 𝑈 weakly saturated or 1-saturated
if the set of types realized by 𝑈 is closed, or equivalently, if every type consistent with 𝑈 is realized
by 𝑈 . Moreover, 𝑈 is 𝜔-saturated if and only if every closed interval in 𝑈 is weakly saturated, and
countably saturated if it is 𝜔-saturated and the underlying set of 𝑈 is countable.
Importantly, it follows from known results in model theory that any class of pseudofinite words

contains an 𝜔-saturated word [84, Prop. A.5], which may in general need to be uncountable. We will
see below that we can sometimes give a concrete construction of 𝜔-saturated pseudofinite words.
First, the following example will help clarify some of the above definitions.

Example 1.11. We consider the notion of saturation in the simple case of a one-letter alphabet, {𝑎}.
All non-finite pseudofinite words are in the same elementary equivalence class. It follows that {𝑎}ap is
topologically isomorphic to the topological monoidℕ∪ {𝜔}, i.e., the one-point compactification ofℕ
with the usual addition, where 𝜔 is an absorbing element. We denote the unique infinite element of
{𝑎}ap by 𝑎𝜔. Types of pseudofinite {𝑎}-words are of one of the following four forms:

• (𝑎𝑛, 𝑎, 𝑎𝑚) for 𝑛, 𝑚 ∈ ℕ;

• (𝑎𝑛, 𝑎, 𝑎𝜔) for 𝑛 ∈ ℕ;

• (𝑎𝜔, 𝑎, 𝑎𝑚) for 𝑚 ∈ ℕ;

• (𝑎𝜔, 𝑎, 𝑎𝜔).

Now consider the words 𝑊1
def= ℕ +ℕop, 𝑊2

def= ℕ + ℤ +ℕop, and 𝑊3
def= ℕ + ℚ × ℤ +ℕop, where

+ is the order sum, ℚ × ℤ = ∑𝑞∈ℚℤ carries the lexicographic order, and the predicate 𝑊𝑎 holds in all

11A more precise name for such a triple would be a ‘1-parameter’ type, but we suppress the ‘1-parameter’ since we have no
need for types with respect to more than one parameter.

10

1.1 Proaperiodic monoids and saturated models

positions. The word𝑊1 is not weakly saturated, because the elementarily equivalent word𝑊2 realizes
the type (𝑎𝜔, 𝑎, 𝑎𝜔), which is not realized in 𝑊1. The word 𝑊2 is weakly saturated, because it realizes
all the types. However,𝑊2 is not 𝜔-saturated, because the prefix to the left of 𝑖, where 𝑖 is any position
in the summand ℤ, is isomorphic to 𝑊1, and not weakly saturated. Notice that any closed interval in
the word in 𝑊3 is either finite or isomorphic to 𝑊3, using the well-known fact that any open interval
in the orderℚ is isomorphic toℚ (cf. e.g., [97, p. 100]). Since finite words and𝑊3 are weakly saturated,
the word 𝑊3 is in fact 𝜔-saturated, and thus countably saturated.

Our main technical result about 𝜔-saturation is that it is stable under substitution:

Theorem 1.12. If 𝑉 is an 𝜔-saturated Δ-word and (𝑈𝑏)𝑏∈Δ is a Δ-indexed collection of Σ-words, each of
which is 𝜔-saturated, then 𝑉 [𝑏/𝑈𝑏] is 𝜔-saturated.

Applications to aperiodic 𝜔-terms. The remainder of our work in [84, Sec. 5–8] contains a num-
ber of applications of the above theory, of which I only highlight a few here. We begin with the
decidability of the word problem for aperiodic 𝜔-terms.12 Let Σ be a finite alphabet. An 𝜔-term over
Σ is a term built up from finite words by recursively applying concatenation and 𝜔-power. If 𝑀 is a
profinite monoid containing the alphabet Σ, then any 𝜔-term 𝑡 has a natural interpretation 𝑡𝑀 in 𝑀 .
The word problem for aperiodic 𝜔-terms asks, given two 𝜔-terms 𝑠 and 𝑡, to decide whether or not
𝑠Σap = 𝑡Σap .
In order to solve this problem, following [100], we will now define, for any 𝜔-term 𝑡, a particular

Σ-word 𝑈𝑡 in the class 𝑡Σap . Let 𝜌 denote the linear orderℕ+ℚ×ℤ+ℕop, which is countably saturated
(Example 1.11). We recursively define:

• If 𝑡 is a term representing a finite word, let 𝑈𝑡 be that finite word.

• If 𝑡 = 𝑡1 ⋅ 𝑡2, let 𝑈𝑡 be the Σ-word 𝑈𝑡1 ⋅ 𝑈𝑡2 .

• If 𝑡 = 𝑠𝜔, let 𝑈𝑡 be the Σ-word (𝑈𝑠)𝜌 .

A simple induction, using Theorem 1.12, now shows that 𝑈𝑡 is countably saturated for every term 𝑡.
Since countably saturated models are unique up to isomorphism, it follows that 𝑠Σap = 𝑡Σap if, and only
if, 𝑈𝑠 and 𝑈𝑡 are isomorphic. Thus, in order to decide the word problem for aperiodic 𝜔-terms, one can
now proceed as in [100] and use a decidability procedure for isomorphism of regular words (cf. [24]
or [114]).13

A further result on 𝜔-terms, originally due to [4] and reproved and generalized with our methods
in [84], is the following. By a factor of an element 𝑥 in a monoid 𝑀 , we mean an element 𝑦 ∈ 𝑀 for
which there exist 𝛼, 𝛽 in𝑀 such that 𝑥 = 𝛼𝑦𝛽. In the monoid literature, 𝑦 is also said to be  -above 𝑥 ,
denoted 𝑦 ≥ 𝑥 . Our use of saturated models allows us to give a fine combinatorial analysis of the set
of factors of a given element 𝑥 of Σap. In particular, this allows us to deduce the fact that, for any 𝜔-
term 𝑡, the set of factors of the corresponding element 𝑡Σap is a well-quasi-order in the factor ordering
12The original proof of decidability was due to McCammond [124], and relied on the word problem for free Burnside

semigroups of sufficiently large exponent [125].
13The correctness proof for this algorithm that was given in [100] relies on a non-trivial part of the original work byMcCam-

mond: the proof of [100, Proposition 5.2] goes through the non-trivial direction of McCammond’s normal forms [124]
(see also [5]). Our identification of the word 𝑈𝑡 associated with an 𝜔-term 𝑡 as a countably saturated models allows us
to avoid this.

11

1 Monoids: Profiniteness, models and pointlikes

≥ , i.e., it does not contain infinite antichains nor infinite descending chains. This was originally
proved as [4, Thm. 7.3], see [84, Cor. 8.9] for our generalization.

1.2 Covering, separation and pointlike sets

As explained in the introduction to this chapter, the theory of finite monoids is intimately related with
questions of decidability for regular sets of finite words. There, we formulated two decidability prob-
lems for a class  of regular languages, namely,membership and separation. We now formulate a third
algorithmic problem on classes of languages, called covering, which has both of the other problems as
special cases, as we will see shortly. In the case where  is the class of languages recognizable by a
pseudovariety 𝐕, which will always be the case for us here, the problem is computationally equivalent
to an older problem from finite semigroup theory, namely, that of computing the 𝐕-pointlike sets. We
now define these notions and explain why they are two sides of the same coin.

Refinements and the covering problem. In what follows, 𝐕 is an arbitrary pseudovariety of
semigroups14, and a subset 𝐿 ⊆ Σ+ is 𝐕-recognizable if it can be recognized by some semigroup in 𝐕.
Below, we will use without further mention the fundamental fact that complements and finite unions
of 𝐕-recognizable languages are again 𝐕-recognizable.

Definition 1.13. If 𝐿 = (𝐿1, … , 𝐿𝑛) is a finite sequence of regular languages over an alphabet Σ, we
say that a sequence 𝐾 = (𝐾1, … , 𝐾𝑛) is a 𝐕-refinement of 𝐿 if 𝐾 is a partition of Σ+, each 𝐾𝑖 is 𝐕-
recognizable, and 𝐾𝑖 ⊆ 𝐿𝑖 for each 1 ≤ 𝑖 ≤ 𝑛.
The covering problem15 for the pseudovariety 𝐕 is the following computational problem: Given as

input a finite sequence 𝐿 of regular languages, output a 𝐕-refinement 𝐾 of 𝐿, or output ‘impossible’ if
none such exists.

Proposition 1.14. For any pseudovariety 𝐕, if the covering problem is decidable, then the separation
problem is decidable, and if the separation problem is decidable, then themembership problem is decidable.

Proof. To see that the separation problem reduces to the covering problem, let 𝐿1, 𝐿2 be regular lan-
guages, and consider the instance of the covering problem for the input sequence (𝐿c1, 𝐿c2). We claim
that a 𝐕-refinement (𝐾1, 𝐾2) exists for (𝐿c1, 𝐿c2) if, and only if, there exists a 𝐕-separator 𝐾 for 𝐿1, 𝐿2,
i.e., a 𝐕-recognizable set 𝐾 such that 𝐿1 ⊆ 𝐾 and 𝐿2 ∩ 𝐾 = ∅. Indeed, if a 𝐕-separator 𝐾 for 𝐿1, 𝐿2
exists, then (𝐾 c, 𝐾) is a 𝐕-refinement of (𝐿c1, 𝐿c2). Conversely, if (𝐾1, 𝐾2) is a 𝐕-refinement of (𝐿c1, 𝐿c2),
then 𝐿1 ⊆ 𝐾 c

1 and 𝐿2 ∩ 𝐾 c
1 ⊆ 𝐾 c

2 ∩ 𝐾 c
1 = ∅, using that (𝐾1, 𝐾2) covers Σ+. The set 𝐾

def= 𝐾 c
1 is thus a

𝐕-separator for 𝐿1 and 𝐿2. In turn, the membership problem reduces to the separation problem, since
a language 𝐿 belongs to 𝐕 if, and only if, 𝐿 is 𝐕-separable from its complement 𝐿c.
14For the statements and results in this section, it is more convenient to work with semigroups than with monoids. The

definitions of ‘pseudovariety’, ‘recognizable’, and ‘(free) profinite’ are the same as for monoids, replacing ‘monoid’ with
‘semigroup’ everywhere. The free semigroup on Σ is denoted Σ+, and can be realized as the set of finite non-empty words
over Σ.

15The covering problem as stated here first appeared in print under the name ‘cover-computability’ in [6]. As we will see
below, it is equivalent to computability of 𝐕-pointlike sets, which originate with Rhodes, with the first decidability re-
sult, in the case where 𝐕 is the pseudovariety of finite aperiodic monoids, due to Henckell [93]. The covering problem
has recently been revisited and generalized to the context of classes of languages not necessarily closed under comple-
ment, with applications to the quantifier alternation hierarchy, see e.g. [96, 142]. Further see [162] for a comprehensive
historical survey, including a careful translation of existing results between the semigroup- and language-theoretic ap-
proaches.

12

1.2 Covering, separation and pointlike sets

Pointlike sets. We now give an equivalent, and historically earlier, formulation of the 𝐕-covering
problem in terms of pointlike sets. For this, recall first that, whenever 𝑆 is a semigroup, the power set
𝑆 also carries a semigroup structure, defined by 𝑈𝑉 def= {𝑢𝑣 | 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 }. A relational morphism
from a semigroup 𝑆 to 𝑇 is a function 𝜙∶ 𝑆 → 𝑇 such that, for any 𝑠 ∈ 𝑆, 𝜙(𝑠) ≠ ∅, and, for
any 𝑠, 𝑠′ ∈ 𝑆, 𝜙(𝑠)𝜙(𝑠′) ⊆ 𝜙(𝑠𝑠′). Note that a function 𝜙∶ 𝑆 → 𝑇 may be equivalently described by
𝑅𝜙

def= {(𝑠, 𝑡) ∈ 𝑆 ×𝑇 ∣ 𝑡 ∈ 𝜙(𝑠)}, and that 𝜙 is a relational morphism if, and only if, 𝑅𝜙 is a subsemigroup
of the product 𝑆 × 𝑇 such that, for every 𝑠 ∈ 𝑆, there exists 𝑡 ∈ 𝑇 such that (𝑠, 𝑡) ∈ 𝑅𝜙.

Definition 1.15. A subset 𝑋 of a finite semigroup 𝑆 is 𝐕-pointlike if, for every finite semigroup 𝑉 ∈ 𝐕
and every relational morphism 𝜙 from 𝑆 to 𝑉 , the set⋂𝑥∈𝑋 𝜙(𝑥) is non-empty. The pointlike problem for
the pseudovariety𝐕 is the computational problem that asks to decide, given as input a finite semigroup
𝑆 and a subset 𝑋 of 𝑆, whether or not 𝑋 is 𝐕-pointlike, and, in the negative case, to output a finite
semigroup 𝑉 in 𝐕 and a relational morphism 𝜙∶ 𝑆 → 𝑉 such that ⋂𝑥∈𝑋 𝜙(𝑥) = ∅.

Example 1.16. To illustrate the general definition in a case that will concern us below, consider the
pseudovariety 𝐀 of aperiodic semigroups. We show that, if 𝐺 is a subgroup of any finite semigroup
𝑆, then 𝐺 is 𝐀-pointlike. Indeed, let 𝜙∶ 𝑆 → 𝐴 be a relational morphism to an aperiodic semigroup,
and consider 𝑅𝜙 ⊆ 𝑆 ×𝐴. The projection 𝜋1 of the semigroup 𝑅𝜙 onto the first coordinate is surjective.
We can therefore (see, e.g., [148, Prop. 4.1.44]) pick a subgroup 𝐻 of 𝑅𝜙 such that still 𝜋1[𝐻] = 𝐺. The
projection 𝜋2[𝐻] of this subgroup 𝐻 onto the second coordinate is a subgroup of 𝐴, and thus it must
be trivial since 𝐴 is aperiodic. For the unique element 𝑒 in 𝜋2[𝐻], it follows that 𝑒 ∈ ⋂𝑔∈𝐺 𝜙(𝑔).

Remark 1.17. To make a link with the work described in Section 1.1, I recall a remark from J. Rhodes
(see [162, p. 28]) which shows that pointlike sets are also natural from a profinite perspective. Just as
we defined the free proaperiodic monoid in Section 1.1, one may define, for any pseudovariety 𝐕, the
relatively free pro-𝐕 semigroup over an alphabet Σ, which we will denote Σ𝐕. By general principles,
there is a continuous homomorphism 𝜋𝐕 from the free profinite semigroup over Σ, Σ+pro, to Σ𝐕. Now,
if 𝑆 is any finite semigroup, and 𝑤 ∈ 𝑆+pro is a non-empty profinite word over 𝑆, let us denote by
[𝑤]𝑆 its image under the unique continuous homomorphism from 𝑆+pro to 𝑆 that extends the identity
function 𝑆 → 𝑆. Using this notation, we obtain a ‘canonical’ relational morphism 𝜒𝐕 from 𝑆 to 𝑆𝐕,
defined, for 𝑠 ∈ 𝑆, by:

𝜒𝐕(𝑠)
def= {𝜋𝐕(𝑤) ∣ 𝑤 ∈ 𝑆+pro, [𝑤]𝑆 = 𝑠}.

This relational morphism is canonical in the sense that a subset 𝑋 of 𝑆 is 𝐕-pointlike if, and only if,
⋂𝑥∈𝑋 𝜒𝐕(𝑥) is non-empty; a proof is given in, e.g. [136, Thm. 3.3]. While this gives a natural conceptual
view on pointlikes using profinite semigroups, it can not be immediately used if one’s goal is to com-
pute pointlikes, since the semigroup 𝑆𝐕 is typically infinite and not easy to understand. Nonetheless,
it has been successfully combined with algorithmic arguments to compute pointlikes for certain pseu-
dovarieties, see e.g., [9, 161] and the survey [162]. However, it is an open problem to give a ‘profinite’
proof of decidability of the pointlike problem for 𝐀.

The fact that the covering and pointlike problems are equivalent is due to [6, Sec. 3]. The problems
are moreover equivalent to a third reformulation, given in [142], and also called covering problem
there. While this three-way equivalence seems to be well-known, I was not able to locate a direct ex-
plicit proof in the literature, so I give one here in Proposition 1.18. The moral of this proposition is that

13

1 Monoids: Profiniteness, models and pointlikes

pointlike sets form obstructions to coverability. In other words, a pointlike set provides a ‘witness’ that
allows a negative answer to the 𝐕-covering problem. We will also deduce from this, in Corollary 1.19,
that the covering and pointlike problems are algorithmically reducible to each other.16

Proposition 1.18. Let 𝑆 be a finite semigroup, 𝑓 ∶ Σ+ ↠ 𝑆 a surjective homomorphism, 𝐹1, … , 𝐹𝑛 a finite
sequence of subsets of 𝑆, and, for each 1 ≤ 𝑖 ≤ 𝑛, write 𝐿𝑖

def= 𝑓 −1(𝐹𝑖). The following are equivalent:

1. For any 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝐹1 × ⋯ × 𝐹𝑛, the set {𝑥1, … , 𝑥𝑛} is not 𝐕-pointlike;

2. There exists a 𝐕-refinement of the sequence (𝐿c1, … , 𝐿c𝑛);

3. There exists a finite set  of 𝐕-recognizable languages such that ⋃ = Σ+ and, for every 𝐾 ∈ ,
there exists 1 ≤ 𝑖 ≤ 𝑛 such that 𝐾 ∩ 𝐿𝑖 = ∅.17

Proof. (1)⇒ (2). Write 𝐹 def= 𝐹1×⋯×𝐹𝑛. Using the assumption, for each 𝑥 ∈ 𝐹 , choose a finite semigroup
𝑉𝑥 in 𝐕 and a relational morphism 𝜙𝑥 ∶ 𝑆 → 𝑉𝑥 such that⋂𝑛

𝑖=1 𝜙𝑥(𝑥𝑖) = ∅. Consider the finite product
𝑉 def= ∏𝑥∈𝐹 𝑉𝑥 , which is again in 𝐕, and define the function 𝜙∶ 𝑆 → (𝑉) by

𝜙(𝑡) def= {(𝑣𝑥)𝑥∈𝐹 | 𝑣𝑥 ∈ 𝜙𝑥(𝑡) for every 𝑥 ∈ 𝐹}.

One readily checks that 𝜙 is again a relational morphism from 𝑆 to 𝑉 . In particular, for each 𝑎 ∈ Σ,
we can pick some 𝑔(𝑎) ∈ 𝜙(𝑓 (𝑎)). Let 𝑔 ∶ Σ+ → 𝑉 be the unique extension of this assignment to a
homomorphism. We note that, for every 𝑤 ∈ Σ+, we have 𝑔(𝑤) ∈ 𝜙(𝑓 (𝑤)), by induction on the length
of 𝑤: The base case is by construction, and for the inductive step, if 𝑤 = 𝑤′𝑎, then

𝑔(𝑤′𝑎) = 𝑔(𝑤′)𝑔(𝑎) ∈ 𝜙(𝑓 (𝑤′))𝜙(𝑓 (𝑎)) ⊆ 𝜙(𝑓 (𝑤′)𝑓 (𝑎)) = 𝜙(𝑓 (𝑤′𝑎)) ,

where we have used that 𝜙 is a relational morphism and 𝑓 is a homomorphism.
We now show that, for every 𝑣 ∈ 𝑉 , there exists 1 ≤ 𝑖 ≤ 𝑛 such that 𝑔−1(𝑣) ∩ 𝐿𝑖 = ∅. Towards a

contradiction, suppose that no such 𝑖 exists, and pick, for each 1 ≤ 𝑖 ≤ 𝑛, a word 𝑤𝑖 ∈ 𝐿𝑖 such that
𝑔(𝑤𝑖) = 𝑣. Then the sequence 𝑥 def= (𝑓 (𝑤1), … , 𝑓 (𝑤𝑛)) is in 𝐹 , and, for each 1 ≤ 𝑖 ≤ 𝑛, we have 𝑣 =
𝑔(𝑤𝑖) ∈ 𝜙(𝑓 (𝑤𝑖)). By definition of 𝜙, we obtain 𝑣𝑥 ∈ 𝜙𝑥(𝑓 (𝑤𝑖)) for every 1 ≤ 𝑖 ≤ 𝑛, which contradicts
the choice of 𝜙𝑥 . Thus, choose a function 𝑖∶ 𝑉 → {1, … , 𝑛} such that 𝑔−1(𝑣) ∩ 𝐿𝑖(𝑣) = ∅ for every 𝑣 ∈ 𝑉 .
We then obtain a 𝐕-refinement of (𝐿c1, … , 𝐿c𝑛) by putting, for each 1 ≤ 𝑖 ≤ 𝑛, 𝐾𝑖

def= ⋃{𝑔−1(𝑣) | 𝑖(𝑣) = 𝑖}.
(2) ⇒ (3). Immediate from the definition of 𝐕-refinement, putting  def= {𝐾1, … , 𝐾𝑛}.
(3)⇒ (1). Pick a finite set of 𝐕-recognizable languages as in (3). Using that 𝐕 is closed under finite

products, we can pick a semigroup 𝑉 ∈ 𝐕 and a homomorphism 𝑔 ∶ Σ+ → 𝑉 such that 𝑔 recognizes
each of the languages in . Define a function 𝜙 from 𝑆 to (𝑉), for each 𝑠 ∈ 𝑆, by

𝜙(𝑠) def= 𝑔[𝑓 −1(𝑠)] = {𝑔(𝑤) | 𝑤 ∈ Σ+ and 𝑓 (𝑤) = 𝑠} .

16The equivalence of (1) and (2) is already contained in [6, Sec. 3], but later literature does not explicitly link it to the
formulation (3). The closest I could find was [96], which shows the equivalence between a more general covering
problem considered in [142] and a newly introduced notion of ‘cone-like set’, which generalizes pointlike sets to ordered
monoids. Note that the proof I give here in fact does not require that 𝐕 is a pseudovariety, but only that it is a class of
finite monoids closed under finite products.

17For readers familiar with the formulation of the covering problem in [142, Sec. 3.2], note that this property precisely says,
in the terminology used there, that the pair (𝐴+, 𝐿) is -coverable, for  the class of 𝐕-recognizable languages over Σ.

14

1.2 Covering, separation and pointlike sets

Note, using that 𝑓 is surjective, that 𝜙 is a relational morphism. Now let 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝐹1 × ⋯ × 𝐹𝑛
be arbitrary. We claim that⋂𝑛

𝑖=1 𝜙(𝑥𝑖) = ∅. Indeed, towards a contradiction, suppose that there would
exist 𝑣 ∈ ⋂𝑛

𝑖=1 𝜙(𝑥𝑖). Then, for each 1 ≤ 𝑖 ≤ 𝑛, pick 𝑤𝑖 such that 𝑓 (𝑤𝑖) = 𝑥𝑖 and 𝑔(𝑤𝑖) = 𝑣. Since 
covers Σ+, pick 𝐾 ∈  such that 𝑤1 ∈ 𝐾 . By assumption, pick 1 ≤ 𝑖 ≤ 𝑛 such that 𝐾 ∩ 𝐿𝑖 = ∅. Since
𝑔 recognizes 𝐾 , and 𝑔(𝑤𝑖) = 𝑣 = 𝑔(𝑤1), we obtain 𝑤𝑖 ∈ 𝐾 . But also, since 𝑓 (𝑤𝑖) = 𝑥𝑖 ∈ 𝐹𝑖, we have
𝑤𝑖 ∈ 𝐿𝑖, contradicting that 𝐾 ∩ 𝐿𝑖 = ∅.

Corollary 1.19. For any pseudovariety 𝐕, the 𝐕-covering problem is decidable if, and only if, the 𝐕-
pointlike problem is decidable.

Proof. To see that the covering problem reduces to the pointlike problem, suppose given an algorithm
for the pointlike problem. We describe an algorithm for the covering problem based on this. Let
𝐿 be a finite sequence of regular languages. It is classical to construct a finite semigroup 𝑆 and a
surjective homomorphism 𝑓 ∶ Σ+ ↠ 𝑆 that recognizes each language in the sequence. One may then
put 𝐹𝑖

def= 𝑓 [𝐿𝑖] for each 𝑖, to be in the situation of Proposition 1.18. For any sequence 𝑥 = (𝑥1, … , 𝑥𝑛) ∈
𝐹1 × ⋯ × 𝐹𝑛, use the assumed algorithm for 𝐕-pointlikes to check whether the set {𝑠𝑖 | 1 ≤ 𝑖 ≤ 𝑛} is
𝐕-pointlike; if this is ever the case, return ‘impossible’, which is correct by the implication (2)⇒ (1) in
Proposition 1.18. Otherwise, the assumed algorithm for 𝐕-pointlikes gives, for every 𝑥 ∈ 𝐹1 ×⋯× 𝐹𝑛, a
finite semigroup 𝑉𝑥 in 𝐕 and a relational morphism 𝜙𝑥 ∶ 𝑆 → 𝑉𝑥 such that⋂𝑛

𝑖=1 𝜙𝑥(𝑥𝑖) = ∅. The proof
of the implication (1)⇒ (2) in Proposition 1.18 shows how to construct from these data a 𝐕-refinement
of the sequence (𝐿c1, … , 𝐿c𝑛), where, for computing the function 𝑖 at the end of that proof, we call an
algorithm for checking disjointness of regular languages.
Conversely, suppose given an algorithm for the 𝐕-refinement problem. Let 𝑆 be a finite semigroup

and let 𝑥1, … , 𝑥𝑛 be 𝑛 distinct elements of 𝑆. Consider the homomorphism 𝑓 ∶ 𝑆+ → 𝑆 that extends
the identity function 𝑆 → 𝑆, and, for each 1 ≤ 𝑖 ≤ 𝑛, let 𝐿𝑖

def= 𝑓 −1({𝑥𝑖}). Proposition 1.18 implies that
{𝑥1, … , 𝑥𝑛} is 𝐕-pointlike if, and only if, the sequence 𝐿′ def= (𝐿c1, … , 𝐿c𝑛) does not have a 𝐕-refinement,
and the proofs of (2)⇒ (3)⇒ (1) in Proposition 1.18 show how to construct, out of a 𝐕-refinement for
𝐿′, a relational morphism witnessing that {𝑥1, … , 𝑥𝑛} is not 𝐕-pointlike.

We note that one may adapt Corollary 1.19 to prove that the 𝐕-separation problem is decidable if,
and only if, one can decide the 𝐕-pointlike problem for pairs, i.e., subsets of size 2. It is unknown
whether there exists a pseudovariety 𝐕 such that the 𝐕-pointlike problem is undecidable, but the 𝐕-
pointlike problem is decidable for pairs.

Krohn-Rhodes and aperiodic pointlikes via merge decomposition. We will now look at the
pointlike problem in the specific pseudovariety of aperiodic semigroups. Henckell [93] showed that
the pointlike problem is decidable for this pseudovariety. In light of Theorem 1.5 and Corollary 1.19,
Henckell’s theorem immediately implies that the covering problem for first-order definable languages
is decidable.
The original motivation for Henckell’s theorem, and more generally for much of the development

of the theory pointlike sets, was the problem of computing complexity of finite semigroups. To ex-
plain what this problem is about, recall first that the Krohn-Rhodes theorem [110] shows that any finite
semigroup can be decomposed into ‘prime factors’, which are aperiodic semigroups or groups. The

15

1 Monoids: Profiniteness, models and pointlikes

decomposition in this theorem is by means of wreath product, which can be thought of as the semi-
group analogue of a sequential composition of automata or transducers. The complexity of a finite
semigroup 𝑆 is defined to be the least number of groups that is needed in a wreath product decompo-
sition of 𝑆. The problem that asks, given a finite semigroup, to compute its complexity, has been open
for almost sixty years.18 The major difficulty in this problem is to compute, for a finite semigroup 𝑆,
a mathematical object that shows that a low-complexity decomposition of 𝑆 is not possible; such a
result is called a lower bound. The computation of aperiodic-pointlike sets due to Henckell [93] can be
used to provide such a lower bound for level 1 in the semigroup complexity hierarchy [119, Sec. 4].
In [85], we gave a short proof of both Henckell’s theorem and the two-sided Krohn-Rhodes theorem,

using a new construction that we called the merge decomposition, and was inspired by the language-
theoretic work in [141].19 I will now give the key definitions and statements of our work in [85].
When performing an inductive argument on finite words over an alphabet Σ in order to prove a

property of a homomorphism 𝑓 from Σ+ to a finite semigroup, one often encounters the following
situation: The alphabet Σ decomposes into two disjoint non-empty subalphabets Σ1 and Σ2, in such
a way that the restrictions of 𝑓 to the free semigroups over Σ𝑖 are already covered by induction. For
the inductive step, any word 𝑤 in Σ+ can then be uniquely decomposed into maximal blocks of letters
belonging only to Σ1 or only to Σ2. For instance, suppose Σ1 = {𝑎, 𝑏} and Σ2 = {𝑥, 𝑦}, and consider
the word 𝑤 = 𝑥𝑥𝑎𝑏𝑏𝑥𝑏𝑦𝑥𝑥𝑏𝑎𝑦. The unique decomposition of this word into the subalphabets is the
sequence (𝑥𝑥, 𝑎𝑏𝑏, 𝑥, 𝑏, 𝑦𝑥𝑥, 𝑏𝑎, 𝑦). The idea of themerge decomposition is that the value of 𝑓 on 𝑤 can
be reconstructed from the values of 𝑓 on each individual block, together with some information on
how blocks from Σ1 and Σ2 should be composed.

More formally, let us fix a finite alphabet Σ and two disjoint non-empty subalphabets Σ1, Σ2 such
that Σ = Σ1 ⊎ Σ2, and let 𝑇1, 𝑇2 be finite semigroups with 𝑓𝑖∶ Σ+𝑖 → 𝑇𝑖 a homomorphism for 𝑖 = 1, 2.
Further, let 𝑔 ∶ (𝑇1 × 𝑇2)+ → 𝑇0 be a homomorphism to a finite semigroup 𝑇0. We would like to use
these data to assign, to every word in Σ+, a value in amerge semigroup, 𝑇𝑀 , that we shall define below.
First, for any pair of words 𝑤1 ∈ Σ+1 , 𝑤2 ∈ Σ+2 , let us write 𝑝(𝑤1𝑤2)

def= (𝑓1(𝑤1), 𝑓2(𝑤2)), a pair
in 𝑇1 × 𝑇2. Since Σ1 and Σ2 are disjoint, whenever 𝑤 ∈ (Σ+1 Σ+2)+, this allows us to uniquely define a
sequence 𝑝̄(𝑤) ∈ (𝑇1 × 𝑇2)+, by applying 𝑝 to each Σ+1 Σ+2 -block of 𝑤. We obtain a homomorphism
𝑓0∶ (Σ+1 Σ+2)+ → 𝑇0, defined by 𝑓0(𝑤)

def= 𝑔(𝑝̄(𝑤)) for every 𝑤. In order to extend the definition of
𝑓0 to give a function defined on all of Σ+, we need to take into account the possibility that a word
𝑤 ∈ Σ may start with a letter from Σ2 and may end with a letter from Σ1. We first extend each of
the semigroups 𝑇0, 𝑇1, 𝑇2 to a monoid, by adding a (new) identity element, 𝐼𝑖, thus obtaining monoids
𝑇 𝐼𝑘 for 𝑘 = 0, 1, 2. We also still denote by 𝑓𝑘 the unique extension of 𝑓𝑘 to a monoid homomorphism
(Σ𝑘)∗ → 𝑇 𝐼𝑘 , i.e., 𝑓𝑘(𝜖)

def= 𝐼𝑘 , for 𝑘 = 0, 1, 2. Now, when 𝑤 ∈ Σ+, we can uniquely write 𝑤 = 𝑣2𝑢𝑣1, with
𝑣2 ∈ Σ∗2 , 𝑢 ∈ (Σ+1 Σ+2)∗, and 𝑣1 ∈ Σ∗1 , and define 𝜙(𝑤) ∶= (𝑓2(𝑣2), 𝑓0(𝑢), 𝑓1(𝑣1)).
While this fulfills our desire of extending the definition of 𝑓0 to the entire domain Σ+, the function

𝜙∶ Σ+ → 𝑇 𝐼2 ×𝑇 𝐼0 ×𝑇 𝐼1 is not a homomorphism, as it is not even clear how themultiplication on 𝑇 𝐼2 ×𝑇 𝐼0 ×𝑇 𝐼1
should be defined. The merge decomposition, that we introduce now, will refine the function 𝜙 to
a homomorphism 𝑓 , whose codomain semigroup moreover lies in a well-controlled pseudovariety,
18In June 2024, Margolis, Rhodes, and Schilling published a preprint proving decidability of this problem [118].
19The paper [141] also proved separation for first-order logic on infinite words indexed by the ordinal 𝜔. In 2022, together

with Thomas Colcombet and with Rémi Morvan, who at the time was a student in the Parisian Research Master in
Computer Science (MPRI), we extended this result to obtain decidability of the covering problem for first-order logic
over any countable ordinals [37].

16

1.2 Covering, separation and pointlike sets

parametric in the semigroups 𝑇0, 𝑇1, 𝑇2 that we started from.

Our construction of the codomain semigroup 𝑇𝑀 of this homomorphism 𝑓 will be an instance of
the triple product [48, Sec V.9], of which we recall the definition first. Let (𝑆, +) be a (not necessarily
commutative) semigroup equippedwith two actions on it, a left action of a semigroup (𝑆𝐿, ⋅) and a right
action of a semigroup (𝑆𝑅, ⋅), and suppose that the two actions commute, i.e., (𝑠𝐿 ⋅ 𝑠) ⋅ 𝑠𝑅 = 𝑠𝐿 ⋅ (𝑠 ⋅ 𝑠𝑅)
for any 𝑠𝐿 ∈ 𝑆𝐿, 𝑠 ∈ 𝑆, 𝑠𝑅 ∈ 𝑆𝑅. The triple product (𝑆𝑅, 𝑆, 𝑆𝐿) is the semigroup of triples (𝑠𝑅, 𝑠, 𝑠𝐿), with
multiplication defined by

(𝑠𝑅, 𝑠, 𝑠𝐿) ⋅ (𝑠′𝑅, 𝑠
′, 𝑠′𝐿) ∶= (𝑠𝑅𝑠′𝑅, 𝑠𝑠

′
𝑅 + 𝑠𝐿𝑠′, 𝑠𝐿𝑠′𝐿) .

Note that the multiplication can be viewed as a matrix multiplication, if we represent an element
(𝑠𝑅, 𝑠, 𝑠𝐿) by the lower triangular matrix (𝑠𝑅 0

𝑠 𝑠𝐿).

We now apply the triple product construction in order to define the codomain semigroup, 𝑇𝑀 , in the
situation described above. For the semigroup 𝑆, we take 𝑆 def= (𝑇 𝐼0)𝑇

𝐼
1×𝑇 𝐼2 , equipped with the pointwise

product of 𝑇 𝐼0 , which we denote by +. For the semigroup 𝑆𝐿, we take the submonoid of endofunctions
End(𝑇 𝐼1) consisting of the right multiplication functions 𝑡 ↦ 𝑡𝑥 , for each 𝑥 ∈ 𝑇1, and the constant
functions 𝑐𝑥 ∶ 𝑡 ↦ 𝑥 , for each 𝑥 ∈ 𝑇 𝐼1 , and we define 𝑆𝑅 dually to consist of the subsemigroup of
endofunctions End(𝑇 𝐼2) consisting of the left multiplications and constant functions. Now, define com-
muting actions of 𝑆𝐿 on the left of 𝑆 and 𝑆𝑅 on the right of 𝑆 by setting, for any 𝑥 ∈ 𝑆𝐿, 𝑦 ∈ 𝑆𝑅, and
(𝑡1, 𝑡2) ∈ 𝑇 𝐼1 × 𝑇 𝐼2 :

𝑥𝑠𝑦(𝑡1, 𝑡2)
def= 𝑠(𝑥(𝑡1), 𝑦(𝑡2)) .

Finally, let 𝑇𝑀
def= (𝑆𝑅, 𝑆, 𝑆𝐿) be the triple product; we call 𝑇𝑀 themerge semigroup associated to 𝑓1, 𝑓2, 𝑔 .

The homomorphism 𝑓 ∶ Σ+ → 𝑇𝑀 is defined, on letters 𝑎 ∈ Σ, by a case distinction: If 𝑎 ∈ Σ1 then
𝑓 (𝑎) def= (𝑐𝐼2 , 𝑠𝑎, 𝑓1(𝑎)), where

𝑠𝑎(𝑡1, 𝑡2)
def=

⎧⎪⎪
⎨⎪⎪⎩

𝐼0 if 𝑡2 = 𝐼2,

𝑔(𝑡1𝑓1(𝑎1), 𝑡2)) otherwise.

If 𝑎 ∈ Σ2, then 𝑓 (𝑎)
def= (𝑓2(𝑎), 0, 𝑐𝐼1), where 0 denotes the identity of 𝑆.

Crucially, we can show that the homomorphism 𝑓 refines the function 𝜙, in the sense that 𝑓 (𝑤) =
𝑓 (𝑤′) implies 𝜙(𝑤) = 𝜙(𝑤′). Indeed, the function 𝛼∶ 𝑇𝑀 → 𝑇 𝐼2 × 𝑇 𝐼0 × 𝑇 𝐼1 which sends (𝑦, 𝑠, 𝑥) to
(𝑦(𝐼2), 𝑠(𝐼1, 𝐼2), 𝑥(𝐼1)) is such that, for any word 𝑤 ∈ Σ+, 𝛼(𝑓 (𝑤)) = 𝜙(𝑤) [85, Prop. 2.2]. This implies
in particular that the complexity of 𝑇𝑀 is bounded above by the sum of the complexity of 𝑇0 and the
maximum complexity of 𝑇1 and 𝑇2, where we use a two-sided variant of the semigroup complexity
discussed above.

We applied the merge decomposition to prove the two-sided Krohn-Rhodes theorem and Henckell’s
theorem [85, Sec. 3 and 4]. Here, I will only briefly comment on how we use the merge decomposition
to prove the latter result. Let 𝑆 be a finite semigroup, and denote by𝐀(𝑆) the subset of(𝑆) consisting
of the aperiodic-pointlike sets. The crucial idea of Henckell is that 𝐀(𝑆) is itself a subsemigroup of
the power semigroup (𝑆), and that this semigroup structure can be used to compute it. Indeed, for a
general pseudovariety 𝐕, denoting by 𝐕(𝑆) the collection of 𝐕-pointlike subsets of 𝑆, one may prove
the following four properties:

17

1 Monoids: Profiniteness, models and pointlikes

1. (Singletons) For any 𝑠 ∈ 𝑆, the singleton {𝑠} is in 𝐕(𝑆).

2. (Multiplication) For any 𝑈 , 𝑉 ∈ 𝐕(𝑆), the product set 𝑈𝑉 is also in 𝐕(𝑆).

3. (Downward closed) For any 𝑈 ∈ 𝐕(𝑆), if 𝑈 ′ ⊆ 𝑈 , then 𝑈 ′ ∈ 𝐕(𝑆).

4. (Submonad of ) For any  ⊆ 𝐕(𝑆), if  is a 𝐕-pointlike set of the semigroup 𝐕(𝑆), then⋃
is a 𝐕-pointlike subset of 𝑆.

The last property in the list above is not immediately useful for computing pointlike sets, since, to
use it, one would already need to know what the pointlike subsets of 𝐕(𝑆) are. However, in many
concrete cases, such as that of the pseudovariety 𝐀 of finite aperiodic semigroups, one may show
that certain kinds of subsets of a semigroup are always pointlike, thus providing a base case for a
recursive definition. Indeed, as we saw in Example 1.16, in any finite semigroup 𝑆, a subgroup 𝐺 is
always 𝐀-pointlike. It is therefore natural to define, for any finite semigroup 𝑆, and subset 𝑈 ⊆ (𝑆),
the set (𝑈) ⊆ (𝑆) to be the smallest downward closed subsemigroup of (𝑆) which contains 𝑈 ,
and is such that, for any subgroup  of (𝑈), the union ⋃ also lies in (𝑈). The set (𝑆) can
clearly be computed by a simple saturation procedure, by adding unions of subgroups, and closing
under multiplication and subset inclusion. Writing 𝑆 def= {{𝑠} ∣ 𝑠 ∈ 𝑆}, the above arguments show
that(𝑆) ⊆ 𝐀(𝑆). The difficult part of Henckell’s theorem is to show the other inclusion, and this is
where, in [85], we use our merge decomposition. More precisely, we use it to prove the following by
induction (see [85, Thm. 4.3]):

Proposition 1.20. Let Σ be a finite alphabet, 𝑆 a finite semigroup, and 𝑓 ∶ Σ+ → (𝑆) ⧵ {∅} a homo-
morphism. There exist a finite aperiodic semigroup 𝑇 and a homomorphism 𝑔 ∶ Σ+ → 𝑇 such that, for
every 𝑡 ∈ 𝑇 , the set ⋃𝑓 [𝑔−1(𝑡)] is in (im(𝑓)).

Given Proposition 1.20, we now deduce that any 𝐀-pointlike subset of 𝑆 lies in (𝑆). Indeed, con-
sider the homomorphism 𝑓 ∶ 𝑆+ → (𝑆) which sends 𝑠 to {𝑠}, so that im(𝑓) = 𝑆, and pick 𝑇 , 𝑔 as in
Proposition 1.20. Let the relational morphism 𝜙∶ 𝑆 → (𝑇) be defined by

𝜙(𝑠) def= {𝑡 ∈ 𝑇 ∣ there exists 𝑤 ∈ 𝑆+ such that 𝑔(𝑤) = 𝑡 and 𝑠 ∈ 𝑓 (𝑤)} .

Then, if 𝑋 is any 𝐀-pointlike subset of 𝑆, we can pick 𝑡 ∈ ⋂𝑥∈𝑋 𝜙(𝑥). This implies, by definition of 𝜙,
that 𝑋 is a subset of ⋃𝑓 [𝑔−1(𝑡)]. By the choice of 𝑔 and the fact that (im(𝑓)) is downward closed,
we conclude that 𝑋 ∈ (im(𝑓)), as required.
Recall from the discussion under Eq. (1.3) that every finite aperiodic monoid divides a 𝑘-fold semidi-

rect product of semilattices. Our proof of Proposition 1.20 is constructive, in the sense that it gives
a computable bound on the number 𝑘 such that 𝑇 divides a 𝑘-fold semidirect product of semilattices.
In logical terms, this means that, given a finite sequence of regular languages, if it admits an ape-
riodic refinement, then we can compute an upper bound on the quantifier alternation depth that is
needed to define the refining languages. A class of major open problems in finite semigroup theory,
known as the decidability of the dot-depth and the related Straubing-Thérien hierarchy, ask to deter-
mine lower bounds on such 𝑘. More precisely, the current state-of-the-art result is that it is decidable,
for a given first-order definable language 𝐿, whether or not it can be defined with at most 3 quantifier
alternations [140]. That work uses a generalization of covering problems and pointlike sets, as well
as profinite equations.

18

1.3 Outlook on profinite monoids and pointlike sets

Pointlikes for excluded subgroups and modular quantifiers. For 𝐇 a pseudovariety of finite
groups, write 𝐇 for the pseudovariety of finite semigroups for which all subgroups are in 𝐇. This gen-
eralizes the pseudovariety of aperiodic semigroups, since 𝐀 = 𝟏, where 𝟏 denotes the pseudovariety
containing only the trivial group. Another natural class of examples are the pseudovarieties of finite
𝑝-groups, for any prime 𝑝, which we denoted𝐆𝑝 . Here, recall that a finite group is a 𝑝-group if the or-
der of any element is a power of 𝑝, or equivalently, the cardinality of the group is a power of 𝑝. Then,
the pseudovariety of semigroups 𝐆𝑝 has a natural logical interpretation, using modular quantifiers,
which can ‘modulo-count the number of satisfying assignments’. More formally, let 𝑞 be a positive
integer. For every 0 ≤ 𝑟 < 𝑞, we add to the syntax of first-order logic a new quantifier ∃(𝑞,𝑟). The defi-
nition of the semantics is then extended with a clause stating that, for any 𝑤 ∈ Σ+, any formula 𝜙, and
any valuation 𝑣 of the free variables in 𝜙, (𝑤, 𝑣) ∈ J∃(𝑞,𝑟)𝑥.𝜙K if, and only if, the number of positions 𝑝
in 𝑤 such that (𝑤, 𝑣𝑥↦𝑝) ∈ J𝜙K is congruent to 𝑟 modulo 𝑞 [164, Ch. VII]. Straubing [164, Thm. VII.2.1]
proved, using the Krohn-Rhodes theorem, that a language 𝐿 is recognizable by a semigroup in 𝐆𝑝 if,
and only if, 𝐿 is definable in first-order logic with modular quantifiers of modulus 𝑝. Moreover, it
was proved in [95, Cor. 2.4] that the pointlike problem for 𝐆𝑝 is decidable. In light of Corollary 1.19,
covering and separation are thus decidable for first-order logic with quantifiers modulo 𝑝. In [84], we
extended this result to arbitrary pseudovarieties of finite groups, showing:

Theorem 1.21 ([84, Thm. 3.2]). For any pseudovariety of finite groups 𝐇 with decidable membership
problem, the pointlike problem for 𝐇 is decidable.

This theorem in particular yields, as an immediate corollary, the decidability of the covering prob-
lem for regular languages with respect to first-order logic enriched with all modular quantifiers. In-
deed, again by Straubing’s theorem [164, Thm. VII.2.1], languages definable in first-order logic with
arbitrary modular quantifiers are exactly those recognizable by a semigroup in 𝐆sol, where 𝐆sol is
the variety of solvable groups. Here, recall that a group is solvable if the so-called derived sequence
𝐺(0) def= 𝐺, 𝐺(𝑛+1) def= [𝐺(𝑛), 𝐺(𝑛)] = {𝑔ℎ𝑔−1ℎ−1, 𝑔, ℎ ∈ 𝐺(𝑛)} terminates in the trivial group. Theorem 1.21
shows that 𝐆sol has decidable pointlike problem, from which the claimed decidability of the covering
problem then follows, again using Corollary 1.19.
The algorithm for computing pointlikes that we develop in the proof of Theorem 1.21 adapts Henck-

ell’s algorithm described above, modifying the step that uses the monadic property of 𝐇 to take into
account the specific pseudovariety 𝐇; see [84, Def. 3.1].

1.3 Outlook on profinite monoids and pointlike sets

The results described in this chapter naturally suggest a number of further directions and questions,
which I will briefly discuss here. A first natural direction to explore is how far the results in Section 1.1
might be pushed beyond the first-order setting. The beginnings of an extension to monadic second-
order logic were developed in Linkhorn’s PhDwork [111, 112]. This work in particular views monadic
second-order logic as an instance of first-order logic interpreted in the power set algebra, and relates
this to Shelah’s composition theorem [158]. It is proved in [112, Thm. 4.12] that the free profinite
monoid over Σ can be seen as a type space of the pseudofinite monadic second-order theory of finite
words. It is natural to ask whether, similar to our work in Section 1.1, this logical point of view on
the free profinite monoid can have an impact on the theory of (pro)finite monoids. In particular,

19

1 Monoids: Profiniteness, models and pointlikes

what is the correct interpretation of saturation in this setting? Can this be used to solve profinite
word problems for pseudovarieties outside the aperiodic setting? The paper [7] contains a related but
different ‘concrete’ approach to profinite monoids and pseudofinite words. From a model-theoretic
point of view, the pseudofinite words that [7] associate to elements of the free proaperiodic monoid
can be seen as the prime models, as we show in the unpublished draft [88]. It is interesting that the
results in [7] apply more generally than in just the aperiodic setting. Can a model-theoretic analysis
shed further light on the results of [7], which go beyond the aperiodic case, but do not use logic
explicitly yet?
A second direction to explore is suggested by work of Marquès [121], which relates our results

in Section 1.1 to categorical logic, in particular, hyperdoctrines and polyadic spaces, which play the
role of, respectively, Boolean algebras and Boolean spaces in a first-order setting. In a recent joint
paperwithMarquès, who is currently a postdocwithme at IRIF [79], we develop a Stone duality theory
for this setting, and use it to prove general completeness and interpolation theorems in a categorical
way. We also identify the notion of saturation in the categorical logic setting [79, Rem. 5.8]. In future
work, I would like to investigate how this categorical view can help to ‘lift’ our results from profinite
monoids to profinite structures relevant to recognition of more general structures than words. Here,
I have in mind in particular the general notion of profinite monad introduced in [25], and the specific
notion of recognition for 𝜆-terms that we developed in collaboration with Melliès and Moreau in [77],
to be investigated further in Moreau’s forthcoming PhD thesis, co-supervised by Melliès and me.

In the theory of pointlike sets (Section 1.2), in addition to the questions already pointed to in the
main text, I belive there is also room for a more category-theoretic investigation, see for example [94].
Moreover, in our work on pointlike sets with Steinberg we were not able to fully exploit the profi-
nite perspective, and instead had to give intricate, combinatorial arguments involving concrete finite
semigroups. As mentioned in Remark 1.17, it remains a fascinating open question whether there are
‘profinite’ proofs of Henckell’s theorem on aperiodic pointlike sets, and its generalizations. It would
also be useful here to develop a profinite approach for other structures than monoids, in order to see,
for example, if our results for countable ordinals in [37] could extend to a logic beyond first-order.

20

2 Uniform interpolation: Topology, proof
theory, and compact congruences

The results presented in this paper have had a rather long gestation period. (. . .) That [the uniform
interpolation] Theorem 1 is true is quite a surprise to me.

–A. M. Pitts [139, p. 5]

Interpolation is the problem that asks, given a logical entailment

𝐴 ⊢ 𝐶 ,

to find 𝐵 that only uses symbols that appear in both 𝐴 and 𝐶, such that

𝐴 ⊢ 𝐵 and 𝐵 ⊢ 𝐶 .

This concept was introduced by Craig [39], who showed how one can always find an interpolant when
𝐴 and 𝐶 are formulas in first-order logic. Craig’s interpolation theorem became a cornerstone result
in model theory, see [54] for a survey.
The focus of this chapter is on a number of recent results around an interpolation property of

intuitionistic logic that was first established by Pitts [139]. In order to motivate Pitts’ theorem (stated
as Theorem 2.1 below), we first show how to prove a strong version of Craig’s theorem in a specific
setting, namely, the propositional one. Let 𝐴(𝑥̄, 𝑝̄) and 𝐶(𝑥̄, 𝑞̄) be formulas of Boolean propositional
logic 𝐁 and suppose that 𝐴 ⊢𝐁 𝐶, that is, the formula ¬𝐴 ∨ 𝐶 is a Boolean tautology. Now define

𝐵(𝑥̄) def= ⋁
{
𝐴(𝑥̄, 𝑏̄) | 𝑏̄ ∈ {⊥, ⊤}𝑝̄

}
, (2.1)

that is, 𝐵 is the disjunction of all possible variants of 𝐴 obtained by substituting some vector of truth
values for the propositional variables 𝑝̄. One readily observes that 𝐵 is an interpolant for the entail-
ment 𝐴 ⊢𝐁 𝐶: The fact that 𝐴 ⊢𝐁 𝐵 follows from the definition of 𝐵, and the fact that 𝐵 ⊢𝐁 𝐶 uses the
assumption that 𝐴 ⊢𝐁 𝐶.
Notice that the interpolant 𝐵 defined here does not depend on the precise shape of the consequent

formula 𝐶, but only on the antecedent formula 𝐴 and the subset 𝑝̄ of variables ‘to be eliminated’ from
𝐴. In other words, 𝐵 works uniformly as an interpolant, namely, for any consequence 𝐶′ of 𝐴 that
does not contain the variables 𝑝̄. Thus, 𝐵 is called a right uniform interpolant for 𝐴 with respect to
𝑝̄. Symmetrically, the expression ⋀{𝐶(𝑥̄, 𝑏̄) | 𝑏̄ ∈ {⊥, ⊤}𝑞̄} defines a left uniform interpolant for 𝐶 with
respect to 𝑞̄.
The purpose of this chapter is to study uniform interpolation in the context of intuitionistic logic.

Intuitionistic propositional logic 𝐈 is a proper subsystem of 𝐁 that finds its origins in the 1920s in

21

2 Uniform interpolation: Topology, proof theory, and compact congruences

foundational work by Brouwer, subsequently formalized by Kolmogorov and Heyting; see [12] and
the references therein. A relationship between 𝐈 and the formal study of computation was suggested
early on by Curry [40], and realized by Howard [98], who reinterpreted formulas of 𝐈 as type ex-
pressions in a 𝜆-calculus with type constructors for functions, products, sums, unit, and empty types,
and showed that formal proofs of 𝐈-formulas correspond to programs written in this calculus. For
our purposes in this chapter, it is most convenient to first define the logic 𝐈 algebraically, through
the notion of Heyting algebra, which is the appropriate intuitionistic generalization of the classical
concept of Boolean algebra. In addition to the algebraic and computational views on 𝐈 mentioned in
this introduction, there exist at least two further important points of view, namely a proof-theoretic
and a semantic one. We will touch on both of these later in this chapter.
The algebraic approach to logic considers formulas as elements of an abstract algebraic structure,

which is typically a bounded lattice, that is, a tuple (𝐿, ∨, ∧, ⊥, ⊤) such that ∨ (‘join’) and ∧ (‘meet’) are
commutative idempotent monoid operations with neutral elements ⊥ and ⊤, respectively, satisfying
the absorption laws 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 = 𝑎 ∧ (𝑎 ∨ 𝑏) for all 𝑎, 𝑏 ∈ 𝐿. A bounded lattice has a natural partial
order defined by 𝑎 ≤ 𝑏 if, and only if, 𝑎∧𝑏 = 𝑎, or equivalently 𝑎∨𝑏 = 𝑏. AHeyting algebra is a bounded
lattice (𝐻, ∨, ∧, ⊥, ⊤) in which, for any 𝑎 ∈ 𝐴, the ‘meet with 𝑎’ operation 𝑐 ↦ 𝑎∧𝑐 has an upper adjoint,
i.e., for any 𝑏 ∈ 𝐻 , the set {𝑐 ∈ 𝐻 | 𝑎 ∧ 𝑐 ≤ 𝑏} has a maximum, which is denoted 𝑎 ⇒ 𝑏. We also write
¬𝑎 def= 𝑎 ⇒ ⊥. Note that Heyting algebras are always distributive, i.e., 𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) for
every 𝑎, 𝑏, 𝑐 ∈ 𝐻 . A Boolean algebra a Heyting algebra in which 𝑎 ∨ ¬𝑎 = ⊤ for every 𝑎 ∈ 𝐴.
By general principles of universal algebra (see, e.g., [29, §II.11]), the free Heyting algebra on any set

of generators 𝑋 , ℍ(𝑋), exists, and can be based on the set of equivalence classes of 𝐈-formulas with
variables in𝑋 , with the various operations given by the syntax. Figure 2.1 shows a part of the diagram
of the free Heyting algebra on a single generator 𝑝. We often identify elements of ℍ(𝑋) with terms.
Free finitely generated Heyting algebras have a rich structure, which was deeply studied throughout
the twentieth century; see, e.g. [31, Ch. 7] and the references therein for an overview.

⊥

𝑝¬𝑝

𝑝 ∨ ¬𝑝 ¬¬𝑝

¬𝑝 ∨ ¬¬𝑝¬¬𝑝 → 𝑝

¬¬𝑝 ∨ (¬¬𝑝 → 𝑝) (¬¬𝑝 → 𝑝) → (𝑝 ∨ ¬𝑝)

⊤

⋮

Figure 2.1: The ‘Rieger-Nishimura lattice’: a free Heyting algebra on one generator, 𝑝.

An intuitionistic entailment is defined to be a pair of propositional formulas 𝐴, 𝐶 such that, in the
free Heyting algebra generated by the variables appearing in 𝐴 and 𝐶, we have 𝐴 ≤ 𝐶; in this case, we

22

write 𝐴 ⊢𝐈 𝐶, and the collection 𝐈 of intuitionistic tautologies consists of those 𝐶 for which ⊤ ⊢𝐈 𝐶.
Similarly, a classical or Boolean entailment 𝐴 ⊢𝐁 𝐶 means that 𝐴 ≤ 𝐶 in the free Boolean algebra.

One important difference between intuitionistic and Boolean entailment is that Boolean algebras
are locally finite, that is, the free Boolean algebra on a finite set of generators is finite, while the free
Heyting algebra even on a single generator is already infinite. The fact that free Heyting algebras
are infinite means that the proof strategy for interpolation given in Eq. (2.1) above can no longer
work for intuitionistic logic: If one tried to imitate that definition by substituting for the variables
to be eliminated, instead of just the values ⊤ and ⊥, all possible intuitionistic equivalence classes of
formulas, then one would need to take a disjunction of an infinite set, which is no longer a formula.
It is all the more surprising that the uniform interpolation property still holds for 𝐈:

Theorem 2.1 (Pitts, [139]). Any formula of intuitionistic propositional logic has both left and right
uniform interpolants with respect to any propositional variables.

To make this statement more formal, let 𝐹 be any formula, and 𝑝 a propositional variable. Pitts’
theorem says that there exist formulas E𝑝(𝐹) and A𝑝(𝐹), both 𝑝-free, i.e., not containing 𝑝, such that

𝐹 ⊢𝐈 E𝑝(𝐹), A𝑝(𝐹) ⊢𝐈 𝐹 ,

and such that, for any 𝑝-free formula 𝐴,

if 𝐴 ⊢𝐈 𝐹 then 𝐴 ⊢𝐈 A𝑝(𝐹),

and, for any 𝑝-free formula 𝐶,
if 𝐹 ⊢𝐈 𝐶 then E𝑝(𝐹) ⊢𝐈 𝐶.

In other words, E𝑝(𝐹) is a right uniform interpolant of 𝐹 with respect to the variable 𝑝, and A𝑝(𝐹)
is a left uniform interpolant of 𝐹 with respect to the variable 𝑝. Note that the rules imposed on the
operations E𝑝 and A𝑝 in this definition are exactly the rules for second-order propositional quantifiers.
From this viewpoint, the uniform interpolation theorem states that these propositional quantifiers
can be encoded in the propositional logic itself, and this was one of Pitts’ original motivations for
Theorem 2.1. We will return to propositional quantifiers in Section 2.3.
Recall that a pair of monotone functions 𝑓 ∶ 𝑃 ⇆ 𝑄∶ 𝑔 between partially ordered sets 𝑃 and 𝑄 is

called an adjunction if, for any 𝑥 ∈ 𝑃 , 𝑦 ∈ 𝑄, we have 𝑓 (𝑥) ≤ 𝑦 if, and only if 𝑥 ≤ 𝑔(𝑦); in this case 𝑓 is
called the lower or left adjoint of 𝑔 , and 𝑔 is called the upper or right adjoint of 𝑓 . In algebraic terms,
Pitts’ theorem has the following consequence:

Corollary 2.2. Every homomorphism between finitely presented Heyting algebras has both a lower and
an upper adjoint.

To get an idea why Corollary 2.2 follows from Theorem 2.1, let us prove it in the special case of
finitely generated free algebras. With a slight abuse of notation, we may view E𝑝 as a function from
the free Heyting algebra ℍ(𝑥̄, 𝑝) to the free Heyting algebra ℍ(𝑥̄).1 The defining properties of the
1Indeed, left and right uniform interpolants are unique up to equivalence: if both 𝐸 and 𝐸′ are right uniform interpolants
for 𝐹 with respect to 𝑝, then 𝐸′ is a 𝑝-free formula for which 𝐹 ⊢ 𝐸′ holds, so that 𝐸 ⊢ 𝐸′ must hold, and symmetrically,
𝐸′ ⊢ 𝐸. The same argument applies for left uniform interpolants.

23

2 Uniform interpolation: Topology, proof theory, and compact congruences

right uniform interpolant then imply that, for any 𝐶 ∈ ℍ(𝑥̄), E𝑝(𝐹) ≤ 𝐶 if, and only if, 𝐹 ≤ 𝑖𝑝(𝐶),
where 𝑖𝑝 denotes the natural inclusion, that is, the homomorphism ℍ(𝑥̄) ↪ ℍ(𝑥̄, 𝑝) which is defined
by sending each variable 𝑥 in 𝑥̄ to itself. In other words, E𝑝 is the lower adjoint of 𝑖𝑝 . Similarly, A𝑝
is the upper adjoint of 𝑖𝑝 . With a little more algebraic work, one can extend this argument to apply
to any homomorphism between finitely presented Heyting algebras, see [139, p. 16], and our more
general analysis of the situation in Section 2.3 below.

In the rest of this chapter, I will survey my contributions with various collaborators to the theory
of uniform interpolation, both in intuitionistic logic 𝐈, and beyond that:

1. An open mapping theorem for Esakia spaces, leading in particular to a topological semantic
proof of Pitts’ theorem (Section 2.1);

2. Formalized computation of uniform interpolants, leading to usable and verified implementations
of Pitts’ algorithm for computing interpolants, with modal extensions (Section 2.2);

3. A universal-algebraic study of uniform interpolation, via lattices of compact congruences, with
an application to model-completeness (Section 2.3).

2.1 An open mapping theorem for Esakia spaces

In this section, we develop a topological approach to proving Pitts’ theorem (Theorem 2.1).2 The idea
of using topology for studying intuitionistic logic goes back to Stone [163]. To motivate this idea,
observe first that the collection (𝑋) of open sets of any topological space 𝑋 is a Heyting algebra,
which is even complete: For any collection of open sets , the union of the collection,⋃ , is an open
set, and therefore gives the supremum of  in the lattice (𝑋). The infimum of  is calculated by
taking the interior of the intersection of the collection  . The Heyting implication in (𝑋) is given,
for 𝑈 and 𝑉 open sets, by letting 𝑈 ⇒ 𝑉 be the interior of the set of points that are either in 𝑉 , or not
in 𝑈 . In particular, ¬𝑈 is the interior of the complement of 𝑈 .
A Heyting algebra is called a spatial frame3 if it is isomorphic to (𝑋), for some topological space

𝑋 . The fact that spatial frames are complete makes them not immediately usable for studying Heyt-
ing algebras in general: When restricting to the class of spatial frames, one loses the finitary nature
inherent in Heyting algebras. In particular, free Heyting algebras on two or more generators are not
complete [20, Thm. 4.2]. To obtain all Heyting algebras from a topological construction, one may use
a theorem due to Stone [163], which shows that any bounded distributive lattice (and thus in par-
ticular any Heyting algebra) can be represented as the collection of open and compact subsets of a
certain topological space. Homomorphisms of Heyting algebras then correspond to certain strongly
continuous functions between the spaces in the other direction. We will here use a more modern
point of view on this duality due to Priestley [143] and Esakia [52, 53], who consider subsets that are
2This section is based on joint work from 2016 with Luca Reggio, who was a PhD student at the time, and draws from our
joint publication [83].

3The partial orders underlying complete Heyting algebras are also known as frames in the literature, and as such are central
to the study of point-free topology and topos theory. The logic underlying frames is commonly referred to as ‘geometric’
logic, as opposed to the ‘intuitionistic’ logic considered here. While frames are exactly the same objects as complete
Heyting algebras, the correspondence breaks down at the level of morphisms: A frame is an algebraic structure in the
infinitary algebraic language (⋁, ∧, ⊤), while a Heyting algebra is considered in the finitary language (∨, ∧,⇒, ⊥, ⊤). A
Heyting algebra homomorphism may fail to be a frame homomorphism, and vice versa, see, e.g., [60, Ex. 4.6.5].

24

2.1 An open mapping theorem for Esakia spaces

clopen (i.e., closed and open) up-sets (i.e., upward closed) with respect to a partial order that is added
as additional structure to the topological space. One way to view the results of Stone, Priestley, and
Esakia is that they provide a canonical choice for an embedding of a Heyting algebra into a complete
Heyting algebra of the form . Indeed, for 𝐻 a Heyting algebra, Stone’s representing space 𝑋 is such
that (𝑋) is the ideal completion of 𝐻 . I will recall the basic facts of this duality theory now; I am
intentionally brief here, and refer to, e.g., [60, Ch. 3, 4] for a more thorough introduction.

We will work with partially ordered topological spaces, that is, tuples (𝑋, 𝜏, ≤) such that 𝜏 is a topol-
ogy on 𝑋 and ≤ is a partial order on 𝑋 . The natural mappings between such spaces are the continuous
monotone functions, although we will also consider an important subclass of these below. The rich-
ness of the theory comes from the interaction between this partial order and the topology.4 An ordered
space 𝑋 is totally order-disconnected provided that, for any 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≰ 𝑦, there exists a
clopen, upward closed subset 𝑈 of 𝑋 such that 𝑥 ∈ 𝑈 and 𝑦 ∉ 𝑈 . Now, 𝑋 is called an Esakia space if
(i) 𝑋 is compact, (ii) 𝑋 is totally order-disconnected, and (iii) the downward order-closure ↓𝑈 of any
open subset 𝑈 of 𝑋 is open. A space satisfying (i) and (ii), but not necessarily (iii), is called a Priestley
space. When 𝑋 is a Priestley space, the clopen sets in particular form a basis for the topology on 𝑋 , so
the underlying topological space (𝑋, 𝜏) is a Boolean space, i.e., a compact zero-dimensional Hausdorff
space. The partial order on a Priestley space is truly additional structure: A Boolean space admits
many distinct partial orders that make it into a Priestley space. For a simple example, any finite set
with the discrete topology is a Boolean space, and any partial order on it makes it a Priestley space,
which, in this case, is also automatically an Esakia space. More truly topological examples of Boolean
and Priestley spaces are given below, also see Example 3.4 in Chapter 3.

Esakia [53] proved that the category of Heyting algebras is dually equivalent to a category of Esakia
spaces and Priestley [143] showed that the category of bounded distributive lattices is dually equiva-
lent to a category of Priestley spaces. To introduce some notation, for any bounded distributive lattice
𝐴, we write spec𝐴 for the up to order-homeomorphism unique Priestley space such that 𝐴 is isomor-
phic to the lattice of clopen up-sets of spec𝐴. The lattice 𝐴 and the space spec𝐴 are called each other’s
dual. Moreover, the morphism part of Priestley duality says that there is a natural bijection between
lattice homomorphisms 𝐴 → 𝐵 and continuous monotone functions spec𝐵 → spec𝐴. A distributive
lattice 𝐴 is a Heyting algebra if, and only if, its dual spec𝐴 is an Esakia space. In this case, identifying
𝐴 with the clopen up-sets of spec𝐴, we have, for any 𝑎, 𝑏 ∈ 𝐴, that the Heyting implication 𝑎 ⇒ 𝑏 is
given by

𝑎 ⇒ 𝑏 = {𝑥 ∈ spec𝐴 ∣ for all 𝑦 ≥ 𝑥, if 𝑦 ∈ 𝑎 then 𝑦 ∈ 𝑏} .

A lattice homomorphism ℎ∶ 𝐴 → 𝐵 preserves the Heyting implication ⇒ if, and only if, the dual
function 𝑓 ∶ spec𝐵 → spec𝐴 has the property that, for every subset 𝑆 ⊆ spec𝐴,

↑𝑓 −1(𝑆) = 𝑓 −1(↑𝑆) . (2.2)

4Ordered topological spaces where first studied systematically by Nachbin [132]. The theory becomes especially nice when
the topology is compact and the the partial order is closed as a subset of the square; such structures are called compact
ordered spaces, see, e.g. [60, Sec. 2.3] for an introduction. A complementary point of view on compact ordered spaces is
provided by stably compact spaces, in which the topology is refined to only contain open up-sets, and the partial order
may be forgotten, in exchange for working with a non-Hausdorff topology. We do not pursue this point of view any
further here, but refer to, e.g., [44, 89] for much more information on non-Hausdorff spaces and their applications in
domain theory and ring theory.

25

2 Uniform interpolation: Topology, proof theory, and compact congruences

A function 𝑓 ∶ 𝑋 → 𝑌 between posets is called bounded if it satisfies Eq. (2.2) for any subset of the
domain 𝑋 . Note that 𝑓 is bounded if, and only if, 𝑓 is monotone and for any points 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 ,
if 𝑓 (𝑥) ≤ 𝑦, then there exists 𝑥′ ≥ 𝑥 such that 𝑓 (𝑥′) = 𝑦. The semantically inclined reader may
recognize in this definition of boundedness the ‘back-and-forth’ morphisms of intuitionistic Kripke
frames. Indeed, this is no coincidence: from the point of view of duality, the canonical semantics for
𝐈 is the embedding of a free Heyting algebra into the upward closed sets of its dual Esakia space, and
the natural morphisms in this setting are the morphisms dual to Heyting algebra homomorphisms.5

We write 𝔼(𝑥̄) for specℍ(𝑥̄), the Esakia space dual to the free Heyting algebra ℍ(𝑥̄) over set of
generators 𝑥̄ , also known as the canonical model for intuitionistic propositional logic. Concretely, one
may take as the points of 𝔼(𝑥̄) the prime theories of intuitionistic propositional logic 𝐈 in variables
𝑥̄ , where a theory is a set of formulas closed under entailment and finite conjunction, and a theory 𝑇
is prime if ⊥ ∉ 𝑇 and 𝐴 ∨ 𝐵 ∈ 𝑇 implies 𝐴 ∈ 𝑇 or 𝐵 ∈ 𝑇 . The partial order is given by inclusion of
prime theories. The topology is generated by the collection of subsets {𝐴, 𝐴c ∶ 𝐴 ∈ ℍ(𝑥̄)}, where, for
any 𝐴 ∈ ℍ(𝑥̄), 𝐴 denotes the set of prime theories containing 𝐴, and 𝐴c denotes the complement of
𝐴. We call an Esakia space 𝑋 finitely copresented if 𝑋 is order-homeomorphic to a clopen up-set of
𝔼(𝑥̄), for some finite 𝑥̄ . The name comes from the fact that it is equivalent to saying that the Heyting
algebra dual to 𝑋 is finitely presented; see also Section 2.3 below. The main contribution of [83] is the
following open mapping theorem.

Theorem 2.3 ([83, Thm. 2]). Every continuous bounded map between finitely copresented Esakia spaces
is open.

Given this result, one obtains Pitts’ theorem (Theorem 2.1) as follows. When 𝐹 is an intuitionis-
tic formula in variables 𝑥̄ , 𝑝, it defines a clopen up-set 𝐹 of the Esakia space 𝔼(𝑥̄, 𝑝). The inclusion
homomorphism 𝑖𝑝 ∶ ℍ(𝑥̄) ↪ ℍ(𝑥̄, 𝑝) introduced above has a dual continuous bounded morphism
𝜋𝑝 ∶ 𝔼(𝑥̄, 𝑝) → 𝔼(𝑥̄). Concretely, this morphism sends an intuitionistic prime theory in variables 𝑥̄ , 𝑝
to its intersection with the set of formulas that use only variables 𝑥̄ . By Theorem 2.3, the morphism
𝜋𝑝 is open, and one obtains that the direct image of 𝐹 under 𝜋𝑝 is a clopen up-set. Therefore, there
exists a formula E𝑝(𝐹) ∈ ℍ(𝑥̄) such that

Ê𝑝(𝐹) = 𝜋𝑝[𝐹].

One can then verify that E𝑝(𝐹) indeed satisfies the required properties for the right uniform inter-
polant of 𝐹 with respect to 𝑝. The left uniform interpolant A𝑝(𝐹) can be obtained in a similar way, by
considering the ‘universal image’ of 𝐹 , that is, one finds a formula A𝑝(𝐹) in ℍ(𝑥̄) such that

Â𝑝(𝐹) = {𝑥 ∈ 𝔼(𝑥̄) | for all 𝑦 ∈ 𝔼(𝑥̄, 𝑝), if 𝜋𝑝(𝑦) ≥ 𝑥, then 𝑦 ∈ 𝐹},

and one shows that this formula A𝑝(𝐹) indeed satisfies the properties for the left uniform interpolant
of 𝐹 with respect to 𝑝. This completes the proof that Theorem 2.1 follows from Theorem 2.3.
5The point of view on duality for lattice-based structures that I point to in this paragraph uses the canonical extension,
i.e., the embedding of a lattice into the lattice of up-sets of its dual space. This idea originates with [105], for Boolean
algebras, [64], for distributive lattices and their expansions, and [63] for lattice expansions in general. I previously
studied canonical extensions for stably compact spaces and proximity lattices [78], and also used them for obtaining
dualities for non-distributive lattices [59] and algebras for many-valued logic [58]. I use them as a tool for proving
completeness in Section 3.1.

26

2.1 An open mapping theorem for Esakia spaces

I will end this section by sketching some of the ingredients of our proof of Theorem 2.3 itself, which
we gave in [83]. One first shows, with a simple topological argument, that it suffices to consider
morphisms between the Esakia spaces 𝔼(𝑥̄) that are dual to free finitely generated Heyting algebras.
These spaces are metrizable by general topological principles, and our proof uses an explicit definition
of a metric for the topology, that I will recall now. By Esakia duality, we identifyℍ(𝑥̄)with the clopen
up-sets of 𝔼(𝑥̄). That is, any clopen up-set of 𝔼(𝑥̄) can be described by a Heyting algebra term with
variables in 𝑥̄ . The depth of an clopen up-set 𝐾 of 𝔼(𝑥̄) is the minimum nesting depth of the operation
⇒ that is required to describe 𝐾 ; we denote it by |𝐾 |. For any two points 𝑥, 𝑦 ∈ 𝔼(𝑥̄), we say that a
clopen up-set 𝐾 separates 𝑥 from 𝑦 if exactly one of the points 𝑥 and 𝑦 is in the set 𝐾 . We now define

𝑐(𝑥, 𝑦) def= min{|𝐾 | ∶ 𝐾 separates 𝑥 from 𝑦}, 𝑑(𝑥, 𝑦) def= 2−𝑐(𝑥,𝑦) .

The function 𝑑 defines an ultrametric on 𝔼(𝑥̄), and the topology on 𝔼(𝑥̄) is generated by the clopen
balls in this ultrametric [83, Lem. 9]. This is a familiar type of definition in the theory of profinite
monoids, here applied in the slightly different case of Priestley space, which are in fact the same thing
as profinite partial orders [160]. Indeed, the ultrametric 𝑑 provides a profinite approximation of the
ordered space 𝔼(𝑥̄) by a sequence of finite partially ordered sets, in the following sense. For any 𝑘 ≥ 0
and 𝑥, 𝑦 ∈ 𝔼(𝑥̄), we write 𝑥 ≤𝑘 𝑦 if 𝑥 ∈ 𝐾 implies 𝑦 ∈ 𝐾 for every 𝐾 ∈ ℍ(𝑥̄) with |𝐾 | ≤ 𝑘. The
relation ≤𝑘 is a pre-order on 𝔼(𝑥̄), and the quotient partial order, which we denote 𝑃𝑘 , is finite. From
the definitions, it follows that two points 𝑥 and 𝑦 are identified in 𝑃𝑘 if, and only if, 𝑑(𝑥, 𝑦) < 2−𝑘; thus,
the finite poset 𝑃𝑘 essentially consists of the clopen balls of radius 2−𝑘 . With these definitions, proving
that a continuous bounded map is open then reduces to a combinatorial argument that entirely takes
place in this sequence 𝑃𝑘; I refer to our article [83, Sec. 5], for more details.
Note that the stratification of an Esakia space 𝔼(𝑝̄) that we use here is similar in spirit to the se-

quence building up the free pro-aperiodic monoid in Eq. (1.3) used in Section 1.1 of Chapter 1, even
if that stratification was related to nestings of quantifiers in first-order logic, rather than nestings of
implications in intuitionistic propositional logic. I leave investigation of a more formal link between,
or common framework for, these two methods to future work, also see my remarks in Section 2.4.
Our approach in [83] towards proving Pitts’ theorem follows the spirit of an earlier proof [73], but

avoids the heavier machinery of sheaves and games used there. In essence, we replace the categori-
cal sheaf machinery by the use of topology, and we use an ultrametric on the space 𝔼(𝑥̄) instead of
model-theoretic games, in order to give us an appropriate induction parameter. Still, the combina-
torial argument that we need to complete the proof of our open mapping theorem [83, Lemma 10]
was directly inspired by the one given in [73], and, as far as we can tell, this combinatorial complica-
tion cannot be avoided in semantic proofs. As a consequence, while the proof outlined here gives a
topological proof of existence of Pitts’ uniform interpolants, it does not provide a feasible way of con-
structing them, nor of obtaining a reasonable bound on their complexity. In Section 2.2, I will discuss
a more tractable way of computing uniform interpolants, going back to Pitts’ original proof method.

27

2 Uniform interpolation: Topology, proof theory, and compact congruences

2.2 Verified computation of uniform interpolants

In this section, I will discuss a verified implementation of the computation of uniform interpolants in
intuitionistic propositional logic 𝐈, and in certain modal and intuitionistic modal logics.6

Existing proof methods for uniform interpolation can be divided, roughly, into two strands: one is
syntactic and relies on the existence of a well-behaved sequent calculus for the logic, as in Pitts’ orig-
inal proof [139], see also [101], the other is semantic and uses either topology, as in Section 2.1 above,
or Kripke models, in order to establish definability of bisimulation quantifiers [73]. An advantage of
the syntactic method over the semantic one is that, at least in theory, it provides better bounds on
the complexity of computing uniform interpolants. In practice, however, it is not feasible to compute
uniform interpolants by hand, as the calculations quickly become complex even on small examples.
The algorithms for computing uniform interpolants are often intricate, and it is a non-trivial task to
implement them correctly.
It occurred to me around 2019 that this situation might make the syntactic method of proving

uniform interpolation an excellent candidate for verified computation. Having recently started towork
at a computer science laboratory, IRIF, and being lucky enough to share an office with an experienced
user of the Coq proof assistant/Rocq Prover7 [168], we set to work to implement a verified version of
Pitts’ algorithm for computing uniform interpolants in 𝐈, which we published in [56]. We subsequently
extended these methods to provide a verified computation of uniform interpolants for the modal logics
𝐊 and 𝐆𝐋, and for the intuitionistic modal logic 𝐢𝐒𝐋. This in particular gave the new mathematical
result that the logic 𝐢𝐒𝐋 has uniform interpolation, resolving an open question of [75]. A different,
semantic proof of this result has since appeared in the preprint [175]. I will here focus on describing
the results for 𝐈 and its modal extension 𝐢𝐒𝐋, referring to our publication [55] for more information
about the cases of 𝐊 and 𝐆𝐋. I will first give an overview of the proof, and I will comment a bit more
on their formalization in Coq/Rocq at the end of the section.
The proof we follow in this line of work is based on the original method of Pitts [139], and relies

on a proof calculus for 𝐈 known as LJT or G4iP in the literature [47, 99, 176]. The main features of the
calculus G4iP are that it allows for a terminating proof search without loop checking, and that it does
not have a contraction rule. This calculus has itself often been at the basis of the implementation of
proof search for proof assistants, notably Coq/Rocq’s ‘firstorder’ tactic [38]. The most intricate part
of Pitts’ proof, and consequently also of our formalization, is the proof of correctness of the definition
of propositional quantifiers, which is done by induction on the structure of a G4iP-proof. We adapt
this to a sequent calculus G4iSLt developed in [159].
The intuitionistic modal language contains, in addition to the language of intuitionistic propositional

logic 𝐈, an additional unary operator □. We will from now on denote formulas by lowercase Greek
letters 𝜙, 𝜓, … and we write Var(𝜙) to denote the set of all propositional variables occurring in the
formula 𝜙. The normal axiom (k) is the formula □(𝑝 ⇒ 𝑞) ⇒ □𝑝 ⇒ □𝑞, and the strong Löb axiom
(sl)8 is the formula (□𝑝 ⇒ 𝑝) ⇒ 𝑝. Also recall the rules modus ponens: From 𝜙 and 𝜙 ⇒ 𝜓 infer
6The work reported in this section started in 2020 in collaboration with my then-new office-mate at IRIF, Hugo Férée,
published in [56]. This led to a subsequent paper of ours, in collaboration with two post-docs, van der Giessen and
Shillito, which received the Best Paper Award in IJCAR 2024 [55].

7It has been decided a few years ago by the Coq/Rocq development community that Coq will be renamed to ‘The Rocq
Prover’. At the time of writing (July 2024), according to the software’s homepage https://coq.inria.fr, the rename was in
preparation, with a new visual identity and website planned for the end of 2024. I refer to it as ‘Coq/Rocq’ in this text.

8This axiom was introduced in the context of the study of provability logic in extensions of Heyting arithmetic, where the

28

https://coq.inria.fr

2.2 Verified computation of uniform interpolants

𝜓, necessitation: From 𝜙 infer □𝜙, and substitution: From 𝜙 infer 𝜎𝜙, for any uniform substitution 𝜎.
Now, intuitionisticmodal logic 𝐢𝐒𝐋 is defined as the smallest set of formulas containing all intuitionistic
tautologies, axioms k and sl, and closed under the rules modus ponens, necessitation, and substitution.
An intuitionistic sequent is a pair of a finite multiset of formulas Γ and a formula 𝜙, which we

denote by Γ ⊢ 𝜙. Given two multisets Γ and Δ, we write Γ, Δ for the multiset addition of Γ and Δ,
and, when 𝜙 is a formula, we write Γ, 𝜙 as notation for Γ, {𝜙}. We also write Var(Γ) def= ⋃𝛾∈Γ Var(𝛾).
For 𝑝 a propositional variable, we write Γ𝑝

def= Γ ⧵ {𝑝} for any multiset Γ. We also use the following
notation □−1 on formulas:

□−1𝜓 def=
⎧⎪⎪
⎨⎪⎪⎩

𝜙 if 𝜓 = □𝜙 for some formula 𝜙,

𝜓 otherwise.

This notation is naturally overloaded to also apply to (multi)sets of formulas: □−1Γ def= {□−1𝜙 | 𝜙 ∈ Γ}.
We work with the sequent calculus G4iSLt [159], which was specifically designed with the aim of

proving uniform interpolation for 𝐢𝐒𝐋. The calculus is an extension of the calculus G4iP for 𝐈 [46]. We
show the calculi G4iP and G4iSLt in Figure 2.2, using the □−1 operator to rephrase its definition slightly
compared to [159]. In that figure we use the notation, common in proof theory, that an expression of
the form

Γ1 ⊢ 𝜙1 … Γ𝑛 ⊢ 𝜙𝑛 (R)
Δ ⊢ 𝜓

denotes a derivation rule named ‘R’, which states: ‘given the sequents Γ1 ⊢ 𝜙1, … , Γ𝑛 ⊢ 𝜙𝑛, one may
derive the sequent Δ ⊢ 𝜙’. A sequent calculus is a set of derivation rules. For a sequent calculus S, we
denote by ⊢S the set of sequents that are derivable using the rules in S. More formally, ⊢S is defined to
be the smallest set of sequents such that, for any rule (R) in S, if all the sequents above the horizontal
line are in ⊢S, then the sequent below the horizontal line is also in ⊢S. We then write Γ ⊢S 𝜙 to mean
that the sequent Γ ⊢ 𝜙 is an element of the set ⊢S. An equivalent way of stating this definition is:
Γ ⊢S 𝜙 if, and only if, there exists a finite, upwards growing tree whose nodes are sequents, with
Γ ⊢ 𝜙 at the root, and such that each node and its children above it form an instance of a rule in S; in
particular, leaves should be instances of rules in S that have no formulas above the horizontal line.
The sequent calculi of Fig. 2.2 are sound and complete for the logics 𝐢𝐒𝐋 and 𝐈, meaning that a sequent

of the form ∅ ⊢ 𝜙 is derivable in G4iP if, and only if, it is an intuitionistic tautology in 𝐈, and it is
derivable in G4iSLt if, and only if, it is in 𝐢𝐒𝐋. Crucially, these calculi also represent a terminating
strategy for a proof of a tautology, as we explain now.
The weight 𝑤(𝜙) of a formula 𝜙 is defined by adding up weights for symbols occurring in the for-

mula: the symbols ⊥, □,⇒ and variables count for 1, ∧ for 2 and ∨ for 3. This naturally defines a
well-founded strict preorder on the set of formulas: 𝜙 ≺𝑓 𝜓 iff 𝑤(𝜙) < 𝑤(𝜓). In [46], the preorder
on sequents used to prove the termination of G4iP comes from the Dershowitz-Manna ordering on
(finite) multisets induced by this preorder on the elements, where a multiset 𝐵 is considered greater
than a multiset 𝐴 if 𝐵 can be obtained from 𝐴 by replacing elements from 𝐴 by greater elements,
and/or adding new elements. We then define Γ ⊢ 𝜙 ≺ Δ ⊢ 𝜓 if the multiset Γ, 𝜙 is smaller than the
multiset Δ, 𝜓 in this ordering. The important point, which ensures termination for G4iP, is that the

intended interpretation of ‘□𝑝’ is ‘𝑝 is provable’; see [174, Ch. 4] and [74, Sec. 1.3.2].

29

2 Uniform interpolation: Topology, proof theory, and compact congruences

(⊥𝐿)
⊥, Γ ⊢ 𝜒

(IdP)
Γ, 𝑝 ⊢ 𝑝

Γ, 𝜑, 𝜓 ⊢ 𝜒
(∧𝐿)

Γ, 𝜑 ∧ 𝜓 ⊢ 𝜒

Γ ⊢ 𝜑 Γ ⊢ 𝜓
(∧R)

Γ ⊢ 𝜑 ∧ 𝜓

Γ, 𝜑 ⊢ 𝜒 Γ, 𝜓 ⊢ 𝜒
(∨L)

Γ, 𝜑 ∨ 𝜓 ⊢ 𝜒

Γ ⊢ 𝜑𝑖
(∨𝑅𝑖)(𝑖∈{1,2})

Γ ⊢ 𝜑1 ∨ 𝜑2

Γ, 𝜑 ⊢ 𝜓
(⇒R)

Γ ⊢ 𝜑 ⇒ 𝜓

Γ, 𝜑 ⇒ (𝜓 ⇒ 𝜒) ⊢ 𝛿
(∧⇒L)

Γ, (𝜑 ∧ 𝜓) ⇒ 𝜒 ⊢ 𝛿

Γ, 𝜑 ⇒ 𝜒, 𝜓 ⇒ 𝜒 ⊢ 𝛿
(∨⇒L)

Γ, (𝜑 ∨ 𝜓) ⇒ 𝜒 ⊢ 𝛿

Γ, 𝑝, 𝜑 ⊢ 𝜒
(𝑝⇒L)

Γ, 𝑝, 𝑝 ⇒ 𝜑 ⊢ 𝜒
Γ, 𝜓 ⇒ 𝜒 ⊢ 𝜑 ⇒ 𝜓 Γ, 𝜒 ⊢ 𝛿

(⇒⇒L)
Γ, (𝜑 ⇒ 𝜓) ⇒ 𝜒 ⊢ 𝛿

□−1Γ, □𝜙 ⊢ 𝜙
(□R)

Γ ⊢ □𝜙

□−1Γ, □𝜙, 𝜓 ⊢ 𝜙 Γ, 𝜓 ⊢ 𝜒
(□ ⇒L)

Γ, □𝜙 ⇒ 𝜓 ⊢ 𝜒

Figure 2.2: The sequent calculusG4iSLt. The sequent calculusG4iP is the restriction ofG4iSLt obtained
by omitting the two rules involving □.

Dershowitz-Manna ordering of a well-founded ordering is again well-founded. However, the □𝑅-rule
of G4iSLt is not always compatible with this ordering. Indeed, for example, with Γ = ∅ and 𝜙 = ⊥,
note that {□⊥, ⊥} ⊀ {□⊥}. The reason is that this rule both replaces a boxed formula on the right hand
side with its unboxed version, which is a strict subformula, but also moves the boxed formula to the
left-hand side.
We fix this issue by modifying the weight of a sequent so that the right-hand side of the sequent in

the multiset counts double, accounting for the fact that a formula on the right-hand side of a sequent
might be duplicated using a □𝑅 rule: We write Γ ⊢ 𝜙 ≺′ Δ ⊢ 𝜓 whenever Γ, 𝜙, 𝜙 is smaller than Δ, 𝜓, 𝜓
for the multiset ordering induced by ≺𝑓 . The ordering ≺′ is again well-founded, and any hypothesis
of a G4iSLt rule has strictly smaller weight than its conclusion.

We use the ordering ≺′ to recursively construct uniform interpolants. Adapting Pitts’ original proof
scheme for 𝐈, we now define the left and right uniform interpolants for 𝐢𝐒𝐋 as follows. Let Γ be a multi-
set of formulas and 𝜙 a formula. Formulas E𝐢𝐒𝐋𝑝 (Γ) and A𝐢𝐒𝐋

𝑝 (Γ ⊢ 𝜙) are defined by mutual induction on
the ≺′ ordering, respectively as a conjunction of a multiset of formulas p(Γ) and as a disjunction of
a multiset of formulasp(Γ ⊢ 𝜙), given in Fig. 2.3 below. We then show that the right uniform inter-
polant of 𝜙with respect to the variable 𝑝 is the formula E𝐢𝐒𝐋𝑝 ({𝜙}), and that the left uniform interpolant
is the formula A𝐢𝐒𝐋

𝑝 (∅ ⊢ 𝜙).

An intuition behind the table of Fig. 2.3, in analogy with the classical case shown in Eq. (2.1) at the
start of this chapter, is that E𝑝(Γ) should provide a basis for the set of those 𝑝-free formulas 𝜓 so that
Γ ⊢ 𝜓 is derivable. The formula A𝑝(Γ ⊢ 𝜙) should provide a basis for the set of those 𝑝-free formulas
𝜓 such that Γ, 𝜓 ⊢ 𝜙 is derivable. Each line in the table in Fig. 2.3 then corresponds to an upward
application of a deduction rule of the sequent calculus to the sequent in the middle column which
might be used to construct such a derivation. The complexity of the procedure comes from the fact
that the right column then recursively calls the procedure on ≺′-smaller sequents.

Our adaptation to 𝐢𝐒𝐋 of Pitts’ construction for 𝐈 adds formulas to the sets 𝑝 and𝑝 of Pitts’ con-
struction only in the cases where some formula inΔ, 𝜃 contains a boxed subformula. As a consequence,
A𝐢𝐒𝐋
𝑝 (Γ ⊢ 𝜙) = A𝐈

𝑝(Γ ⊢ 𝜙) and E𝐢𝐒𝐋𝑝 (Γ) = E𝐈𝑝(Γ) whenever Γ and 𝜙 do not contain the □ modality.

30

2.2 Verified computation of uniform interpolants

Γ matches p(Γ) contains
(E𝐈𝑝0) Γ′, ⊥ ⊥
(E𝐈𝑝1) Γ′, 𝑞 E𝑝(Γ′) ∧ 𝑞
(E𝐈𝑝2) Γ′, 𝜓1 ∧ 𝜓2 E𝑝(Γ′, 𝜓1, 𝜓2)
(E𝐈𝑝3) Γ′, 𝜓1 ∨ 𝜓2 E𝑝(Γ′, 𝜓1) ∨ E𝑝(Γ′, 𝜓2)
(E𝐈𝑝4) Γ′, (𝑞 ⇒ 𝜓) 𝑞 ⇒ E𝑝(Γ′, 𝜓)
(E𝐈𝑝5) Γ′, 𝑝, (𝑝 ⇒ 𝜓) E𝑝(Γ′, 𝑝, 𝜓)
(E𝐈𝑝6) Γ′, (𝛿1 ∧ 𝛿2) ⇒ 𝛿3) E𝑝(Γ′, (𝛿1 ⇒ (𝛿2 ⇒ 𝛿3)))
(E𝐈𝑝7) Γ′, (𝛿1 ∨ 𝛿2) ⇒ 𝛿3) E𝑝(Γ′, (𝛿1 ⇒ 𝛿3), (𝛿2 ⇒ 𝛿3)))
(E𝐈𝑝8) Γ′, (𝛿1 ⇒ 𝛿2) ⇒ 𝛿3) [E𝑝(Γ′, (𝛿2 ⇒ 𝛿3)) ⇒ A𝑝(Γ′, (𝛿2 ⇒ 𝛿3) ⊢ 𝛿1 ⇒ 𝛿2)] ⇒ E𝑝(Γ′, 𝛿3)

(E𝐢𝐒𝐋𝑝 9) Γ′, □𝛿 □E𝑝(□−1Γ′, 𝛿)
(E𝐢𝐒𝐋𝑝 10) Γ′, (□𝛿1 ⇒ 𝛿2) □[E𝑝(□−1Γ′, 𝛿2, □𝛿1) ⇒ A𝑝(□−1Γ′, 𝛿2, □𝛿1 ⊢ 𝛿1)] ⇒ E𝑝(Γ′, 𝛿2)

𝑠 matches p(𝑠) contains
(A𝐈

𝑝1) Γ, 𝑞 ⊢ 𝜙 A𝑝(Γ ⊢ 𝜙)
(A𝐈

𝑝2) Γ, 𝜓1 ∧ 𝜓2 ⊢ 𝜙 A𝑝(Γ, 𝜓1, 𝜓2 ⊢ 𝜙)
(A𝐈

𝑝3) Γ, 𝜓1 ∨ 𝜓2 ⊢ 𝜙 [E𝑝(Γ, 𝜓1) ⇒ A𝑝(Γ, 𝜓1 ⊢ 𝜙)] ∧ [E𝑝(Γ, 𝜓2) ⇒ A𝑝(Γ, 𝜓2 ⊢ 𝜙)]
(A𝐈

𝑝4) Γ, (𝑞 ⇒ 𝜓) ⊢ 𝜙 𝑞 ∧ A𝑝(Γ, 𝜓 ⊢ 𝜙)
(A𝐈

𝑝5) Γ, 𝑝, (𝑝 ⇒ 𝜓) ⊢ 𝜙 A𝑝(Γ, 𝜓 ⊢ 𝜙)
(A𝐈

𝑝6) Γ, (𝛿1 ∧ 𝛿2) ⇒ 𝛿3) ⊢ 𝜙 A𝑝(Γ, (𝛿1 ⇒ (𝛿2 ⇒ 𝛿3)) ⊢ 𝜙)
(A𝐈

𝑝7) Γ, (𝛿1 ∨ 𝛿2) ⇒ 𝛿3) ⊢ 𝜙 A𝑝(Γ, (𝛿1 ⇒ 𝛿3), (𝛿2 ⇒ 𝛿3)) ⊢ 𝜙)
(A𝐈

𝑝8) Γ, (𝛿1 ⇒ 𝛿2) ⇒ 𝛿3) ⊢ 𝜙 [E𝑝(Γ, (𝛿2 ⇒ 𝛿3)) ⇒ A𝑝(Γ, (𝛿2 ⇒ 𝛿3) ⊢ 𝛿1 ⇒ 𝛿2)] ∧ A𝑝(Γ, 𝛿3 ⊢ 𝜙)
(A𝐈

𝑝9) Γ ⊢ 𝑞 𝑞
(A𝐈

𝑝10) Γ, 𝑝 ⊢ 𝑝 ⊤
(A𝐈

𝑝11) Γ ⊢ 𝜙1 ∧ 𝜙2 A𝑝(Γ ⊢ 𝜙1) ∧ A𝑝(Γ ⊢ 𝜙2)
(A𝐈

𝑝12) Γ ⊢ 𝜙1 ∨ 𝜙2 A𝑝(Γ ⊢ 𝜙1) ∨ A𝑝(Γ ⊢ 𝜙2)
(A𝐈

𝑝13) Γ ⊢ 𝜙1 ⇒ 𝜙2 E𝑝(Γ, 𝜙1) ⇒ A𝑝(Γ, 𝜙1 ⊢ 𝜙2)

(A𝐢𝐒𝐋
𝑝 14) Γ ⊢ □𝛿 □(E𝑝(□−1Γ, □𝛿) ⇒ A𝑝(□−1Γ, □𝛿 ⊢ 𝛿)).

(A𝐢𝐒𝐋
𝑝 15) Γ, □𝛿1 ⇒ 𝛿2 ⊢ 𝜙 □[E𝑝(□−1Γ, 𝛿2, □𝛿1) ⇒ A𝑝(□−1Γ, 𝛿2, □𝛿1 ⊢ 𝛿1)] ∧ A𝑝(Γ, 𝛿2 ⊢ 𝜙)

Figure 2.3: Tables for computing the uniform interpolants for 𝐈 and 𝐢𝐒𝐋 syntactically. The top part of
each table, i.e., (E𝐈𝑝0)-(E𝐈𝑝8) and (A𝐈

𝑝1)-(A𝐈
𝑝13), define p(Γ) and p(Γ ⊢ 𝜙) in the case of 𝐈,

as in [139]. The complete table provides definitions for p(Γ) and p(Γ ⊢ 𝜙) for 𝐢𝐒𝐋. In all
clauses, 𝑞 denotes any propositional variable distinct from 𝑝.

The main claim is now that this algorithm for computing uniform interpolants outlined above is
correct, by which we mean that, for any formula 𝜙, the formulas E𝐢𝐒𝐋𝑝 ({𝜙}) and A𝐢𝐒𝐋

𝑝 (∅ ⊢ 𝜙) are indeed
uniform interpolants on the right and left for 𝜙. In order to prove this correctness, we rely on the
admissibility of the weakening and contraction rules for G4iSLt, by which we mean that these rules,
if added to G4iSLt, do not add any new derivable sequents. Combining this with an induction on the
length of a possible derivation of a sequent and the weight-based sequent ordering ≺′, and a large
case distinction on the last rule in this derivation, we show correctness of our computation for 𝐢𝐒𝐋.
Note that this in particular establishes Theorem 2.1, by omitting any rules that mention □.
I end this section with a few remarks on our mechanization of the computation of uniform inter-

polants, and the formal proof of correctness, referring to our more detailed comments in [55, 56] for
more information. As mentioned above, the mechanization of our proof was carried out in Coq/Rocq,

31

2 Uniform interpolation: Topology, proof theory, and compact congruences

which is a piece of software that takes as input an encoding of mathematical statements in a formal
language of dependent type theory. The formal statements given by the user as input are checked by
the software, in much the same way that a programming language compiler checks that a program
written in the language is correctly typed. An important, and at first rather surprising, fact is that any
statement that one would write in mathematics can, in principle, be translated into a formal statement
in the type theory of Coq/Rocq. A second important property of Coq/Rocq is that it is constructive, by
which I here mean that the formal statements encoded in it, once checked by Coq/Rocq, can also be
interpreted as the types of programs that the computer can execute.9 This second property is relevant
to our work here because it allows us to extract out of our Coq/Rocq formalization a usable program,
which lets end-users compute uniform interpolants, in a way that does not require any installation
or knowledge of the Coq/Rocq development in the background. Such an extracted program for our
work here is available for online experimentation at https://hferee.github.io/UIML/demo.html. The
Coq/Rocq development itself is available at https://github.com/hferee/UIML.

2.3 Compact congruences and model-completeness

In this section, I take a broader view on uniform interpolation, by generalizing from the intuitionistic
and modal logics discussed in the previous sections to arbitrary classes of algebraic structures. This
leads us to establish an intimate connection between uniform interpolation, preservation properties
of compact congruences, and quantifier elimination, in the form of model-completeness.10

Throughout the rest of this section, we fix an algebraic type in the sense of universal algebra (see,
e.g., [29, §II.1]), and by the word ‘algebra’ we mean any structure interpreting that type. Concretely,
this means that we fix a finite set 𝜎 of operation symbols, and, for each 𝑓 ∈ 𝜎, an arity 𝑛(𝑓) ∈ ℕ. An
algebra is, by definition, a set 𝐴 equipped with a function 𝑓 𝐴∶ 𝐴𝑛(𝑓) → 𝐴, for each 𝑓 ∈ 𝜎. We further
assume for convenience that 𝜎 contains at least one operation symbol of arity 0.
The key notion in the algebraic study of uniform interpolation is that of a compact congruence.

Recall11 that a congruence on an algebra 𝐴 is an equivalence relation on 𝐴 that is invariant under all
operations of the algebraic type. When 𝜃 is a congruence on 𝐴, the quotient set 𝐴/𝜃 admits a unique
algebra structure so that 𝜈𝜃 ∶ 𝐴 → 𝐴/𝜃 is a homomorphism. The universal property of the quotient
algebra 𝐴/𝜃 says that any homomorphism ℎ∶ 𝐴 → 𝐵 such that ℎ(𝑎) = ℎ(𝑎′) for every (𝑎, 𝑎′) ∈ 𝜃

factors uniquely as 𝐴 𝜈𝜃→ 𝐴/𝜃 ℎ̄→ 𝐵. The set of congruences on 𝐴, Con(𝐴), when ordered by inclusion,
is a complete lattice, in which the infimum is given by intersection, and the supremum of a set of
congruences is the congruence generated by the union. A congruence is called compact12 if it is
finitely generated.
Congruences can be used to define a general notion of equational consequence, as follows. Denote

by 𝑇 (𝑋) the term algebra over a set of variables 𝑋 , in our fixed algebraic type 𝜎. If 𝐴 is any algebra of
type 𝜎 and 𝑉 ∶ 𝑋 → 𝐴 is a function sending each variable in 𝑋 to an element of 𝐴, then the unique

9There is a rich and fascinating theory behind this idea, which extends the Curry-Howard correspondence mentioned in
the introduction to this chapter (p. 22). A readable introduction to the topic is [133, Ch. 5], including, in Sec. 5.7, some
history and references for the practical applications of this theory to proof assistant software, including Coq/Rocq.

10The work reported in this section was started during my post-doc in Bern in 2014, and published in [82].
11For a textbook treatment of congruences in universal algebra, see, e.g., [29, §II.5–7].
12This usage of the word ‘compact’ originates with the theory of directedly complete partial orders, see, e.g., [60, Def. 7.10],

for more context.

32

https://hferee.github.io/UIML/demo.html
https://github.com/hferee/UIML

2.3 Compact congruences and model-completeness

extension of 𝑉 to a homomorphism 𝑉̄ ∶ 𝑇 (𝑋) → 𝐴 yields, for every term 𝑡 ∈ 𝑇 (𝑋), an element 𝑉̄ (𝑡)
of 𝐴, that we call the result of evaluating the term 𝑡 in 𝐴 under 𝑉 ; when 𝑥1, … , 𝑥𝑛 are the variables
occurring in 𝑡, we may also denote this evaluation result by 𝑡(𝑉 (𝑥1), … , 𝑉 (𝑥𝑛)).

By an equation over 𝑋 , we mean a pair of terms, which we denote by 𝑠 ≈ 𝑡 to signify its intended
interpretation. When 𝐴 is an algebra, we say that 𝑠 ≈ 𝑡 holds in 𝐴, written 𝐴 ⊧ 𝑠 ≈ 𝑡, if, for every
valuation of the variables of 𝑠 and 𝑡 in 𝐴, the results of evaluating 𝑠 and 𝑡 are the same. Let  be a
class of algebras. We define the equational consequence relation in the class. Let  ⊆ 𝑇 (𝑋)2 be a set
of equations and let 𝑠 ≈ 𝑡 be an equation. We define:

 ⊧ 𝑠 ≈ 𝑡 def⟺ for every algebra 𝐴 ∈  and every homorphism 𝑓 ∶ 𝑇 (𝑋) → 𝐴,

if 𝑓 (𝑢) = 𝑓 (𝑣) for all(𝑢, 𝑣) ∈  , then 𝑓 (𝑠) = 𝑓 (𝑡).

For a set of equations  ⊆ 𝑇 (𝑋)2, we also write  ⊧  if  ⊧ 𝑠 ≈ 𝑡 holds for every equation 𝑠 ≈ 𝑡 in
 . In other words,  ⊧  is shorthand for the assertion that the infinitary formula

∀𝑥̄.
(

⋀
(𝑢,𝑣)∈

𝑢 = 𝑣
)

→
(

⋀
(𝑠,𝑡)∈

𝑠 = 𝑡
)

is verified in every algebra 𝐴 of the class . When  is empty, we simply write ⊧ 𝑠 ≈ 𝑡 and ⊧  .
Now fix an arbitrary class of algebras and write ⊧ instead of ⊧. We formally define the algebraic

counterparts of the notions of interpolant and uniform interpolant that we considered above.
Let 𝑋1 and 𝑋2 be sets of variables, let  ⊆ 𝑇 (𝑋1)2 and  ⊆ 𝑇 (𝑋2)2 be finite sets of equations,

and suppose that  ⊧ . An interpolant of this consequence relation is defined to be a finite set of
equations  ⊆ 𝑇 (𝑋1 ∩ 𝑋2)2 such that ⊧  and  ⊧ .
Now let 𝑋 be a set of variables, 𝑌 a subset of 𝑋 , and  ⊆ 𝑇 (𝑋)2 a finite set of equations. A right

uniform restriction of  with respect to the set of variables 𝑌 is a finite set of equations  ⊆ 𝑇 (𝑌)2

such that ⊧ , and, for any equation 𝛼 ∈ 𝑇 (𝑌)2,

if ⊧ 𝛼, then  ⊧ 𝛼 . (2.3)

We say that a right uniform restriction is a right uniform interpolant if we can further allow the equa-
tion 𝛼 to contain any other variables not in 𝑋 , that is, if Eq. (2.3) holds for any equation 𝛼 ∈ 𝑇 (𝑌 ∪𝑍)2,
where 𝑍 is any set of variables disjoint from 𝑋 . We say that a class of algebras has interpolants if an
interpolant exists for any finite, such that ⊧ . We say that a class has uniform restrictions if a
uniform restriction exists for any, and any subset of the variables appearing in, and analogously
for uniform interpolants.
The reader will hopefully recognize the similarity between the above definitions in terms of the

equational consequence relation and the ‘logical’ definitions given at the start of this chapter. The
subtle distinction between ‘right uniform restriction’ and ‘right uniform interpolant’ is introduced
here to be able to speak algebraically about model-completeness in the absence of interpolation, as
we will see below. We did not encounter this distinction in the preceding sections, because the logics
that we considered so far all have interpolants, and in that case, uniform restriction and uniform
interpolation coincide [82, Prop. 3.5].
An algebra 𝐴 in  is called finitely presented if it is isomorphic to a quotient of a free algebra by

33

2 Uniform interpolation: Topology, proof theory, and compact congruences

a compact congruence. A class  is called coherent if any finitely generated subalgebra of a finitely
presented algebra is itself finitely presented.13 The following theorem contains the first main result
we proved in [82, Thm. 3.2], incorporating also a later improvement of [108, Thm 2.3].14

Theorem 2.4. A variety has right uniform restrictions if, and only if, it is coherent. A variety has right
uniform interpolants if, and only if, it is coherent and has interpolants.

For the proof of Theorem 2.4, we developed a general theory for compact congruences. Note first
that, when ℎ∶ 𝐴 → 𝐵 is a homomorphism between finitely presented algebras, we always have an
adjunction ℎ∗∶ Con𝐴 ⇆ Con𝐵∶ ℎ−1 between the congruence lattices: If 𝜓 is a congruence on 𝐴,
then ℎ∗(𝜓) is defined as the congruence on 𝐵 generated by the pairs (ℎ(𝑎), ℎ(𝑏)), as (𝑎, 𝑏) ranges over
all pairs in 𝜓, and if 𝜃 is a congruence on 𝐵, then ℎ−1(𝜃) is defined as the kernel of the composite map
𝐴 → 𝐵 → 𝐵/𝜃. This pushforward ℎ∗ always restricts to a map between the compact congruences,
ℎ∗∶ 𝐾 Con𝐴 → 𝐾 Con𝐵, but the inverse image ℎ−1 need not preserve compactness of congruences;
for a concrete example of such a failure in the case of the variety of groups, see [82, Exa. 3.6]. We then
establish that a variety has right uniform restrictions if, and only if, for any finite generating sets𝑋 and
𝑌 , the natural inclusion 𝑖∶ 𝐹(𝑌) ↪ 𝐹(𝑋 ∪ 𝑌) has the property that 𝑖−1 sends compact congruences to
compact congruences. We show that, in this case, it moreover follows that ℎ−1 preserves compactness
for any homomorphism between finitely presented algebras [82, Prop. 3.8], and is right adjoint to the
map ℎ∗∶ 𝐾 Con𝐴 → 𝐾 Con𝐵. From these results, one may deduce Theorem 2.4 by some general
algebra, see [82, Sec. 3] and [108, Thm. 2.3] for more details.
Left and right uniform interpolation do not behave symmetrically from an algebraic point of view.

Let 𝑌 and 𝑍 be finite sets of variables and  ⊆ 𝑇 (𝑌 ∪ 𝑍)2 a finite set of equations. A left uniform
interpolant of  with respect to 𝑍 is a finite set of equations  ⊆ 𝑇 (𝑌)2 such that  ⊧  and, for any
set of equations  not using any variables from 𝑍 , if  ⊧  then  ⊧ . We show in [82, Prop. 4.3]
that a variety  has left uniform interpolants if, and only if,  has interpolants, and for any finite
generating sets 𝑋 and 𝑌 , the inclusion 𝑖∶ 𝐹(𝑌) ↪ 𝐹(𝑋 ∪ 𝑌) has the property that 𝑖∗ has a left adjoint.
This property however does not lift to arbitrary homomorphisms of finitely presented algebras in
general. The condition that ℎ∗ has a left adjoint for any homomorphism ℎ between finitely presented
algebras is examined in detail in [82, Sec. 4], where we prove the following. When 𝑋 is a finite set of
variables and, are finite sets of equations, we call a finite set of equations  the subtraction of
from  if, for any finite set of equations  , we have that  , ⊧  if, and only if,  ⊧  . We say that
a class of algebras has subtractions if subtractions exist for any finite sets of equations. The condition
that a variety  has subtractions of equations says, in algebraic terms, that, for any finitely presented
-algebra 𝐴, the join operation ∨ on the semilattice 𝐾 Con𝐴 has a lower adjoint [82, Prop. 4.7].

Theorem 2.5 ([82, Thm. 4.10]). For any variety  , the following are equivalent:

1.  has left uniform interpolants and subtractions;

2.  has interpolants, and, for any homomorphism ℎ∶ 𝐴 → 𝐵 between finitely presented -algebras,
ℎ∗∶ 𝐾 Con𝐴 → 𝐾 Con𝐵 has a left adjoint.

13Coherence is a classical notion in the theory of modules, and was introduced into model theory by Wheeler [178]. The
same notion has been studied in-depth for theories of actions of a monoid on a set, see, e.g., [41, 90].

14I only state the theorem in the case of varieties, i.e., classes of algebras defined by equations. The follow-up work [128]
proves more general results, which apply to any universal class of algebras.

34

2.3 Compact congruences and model-completeness

Model-completeness and model companions. Model-theoretic algebra, originating with the
ground-breaking work of A. Robinson [150, 151], casts the basic problem of solving equations in a
logical form, and uses this setting to solve algebraic problems via model theory. A central notion
is that of an existentially closed structure for a first-order theory 𝑇 , which we explain now. Call a
quantifier-free first-order formula15 𝜙, with parameters in a model 𝑀 of 𝑇 , solvable if there is an ex-
tension 𝑀 ′ of 𝑀 which is a model of 𝑇 and has a solution for the formula 𝜙, i.e., an assignment of the
free variables such that 𝜙 is verified. The model 𝑀 is existentially closed if any solvable quantifier-
free formula already has a solution in 𝑀 itself. The original motivating example for this definition is
given by taking 𝑇 to be the theory of fields. The field of real numbers is not existentially closed: The
formula 𝑥2 + 1 = 0 is solvable, but does not have a solution in ℝ. The field of complex numbers is the
existentially closed extension of this model ℝ.

Although the definition of existential closedness is formally clear, a major drawback is that the
property of being existentially closed is in general not definable by a set of first-order sentences, and
thus falls out of the scope of usual model-theoretic methods. However, in fortunate cases, the class
of existentially closed models of a first-order theory 𝑇 are exactly the models of another first-order
theory, 𝑇 ∗. In this case, the theory 𝑇 ∗ is called the model companion16 of 𝑇 .

For later use, I now recall a more abstract characterization of the model companion of a first-order
theory 𝑇 , which is usually taken as the definition in model theory. Let 𝑇 ⊆ 𝑇 ∗. We say that 𝑇 ∗ is a
cotheory of 𝑇 if any universal sentence 𝜙 that follows from 𝑇 ∗ already follows from 𝑇 ; equivalently,
any model of 𝑇 embeds into some model of 𝑇 ∗. A theory 𝑇 ∗ is calledmodel complete if for any sentence
𝜙 there is an existential sentence 𝜓 such that 𝜙 is equivalent to 𝜓 in the theory 𝑇 ∗; equivalently, any
injective homomorphism between models of 𝑇 ∗ is an elementary embedding. Now, 𝑇 ∗ is a model
companion of 𝑇 if it is a model-complete cotheory of 𝑇 . If, moreover, the theory 𝑇 has amalgamation,
then 𝑇 ∗ is called a model completion of 𝑇 . Here, a theory 𝑇 has amalgamation if, for any model 𝐴 of 𝑇
and extensions 𝐵 and 𝐶 of𝐴 that are also models of 𝑇 , there exists a model𝐷which extends both 𝐵 and
𝐶, in such a way that 𝐴 is preserved. For example, the theory of Heyting algebras has amalgamation;
this statement is essentially equivalent to the fact that intuitionistic propositional logic has (non-
uniform) interpolants [117]. A model completion 𝑇 ∗ always has the quantifier elimination property.
For more details on these definitions and their history, see, e.g., [178, Sec. 1] and [32, Sec. 3.5].
Ghilardi and Zawadowski [72, 73] realized that the uniform interpolants of intuitionistic logic can

be used to establish the existence of model companions. In particular, they use Pitts’ Theorem 2.1 to
prove that the theory of Heyting algebras has a model completion. In their own words ([73, p. 4]),

“This is a rather interesting kind of connection: it says that the existence of a classical theory (the
model completion) is equivalent to the existence of a suitable intuitionistic theory.”

The main idea for establishing this connection is that the propositional quantifiers that are guar-
anteed to exist by Theorem 2.1 allow one to express, inside the algebraic type of Heyting algebras,
the solvability of a quantifier-free formula. Based on Wheeler’s previous work [178], Ghilardi and
Zawadowski also connect this to properties of the category of finitely presented Heyting algebras,

15In some contexts, including the ones in this section, quantifier-free formulas reduce to conjunctions of equations; the
notion is then also called algebraically closed. The definitions we give here apply when the first-order theory 𝑇 is
axiomatized by universal sentences; the more general definitions can be found in, e.g., [32, Sec. 3.5].

16Note that, despite the one-letter difference, ‘model companion’ is an entirely different concept from ‘modal companion’.
For the latter, see, e.g., [31, Sec. 9.6].

35

2 Uniform interpolation: Topology, proof theory, and compact congruences

and this work was an important precursor to our algebraic characterizations in [82] described above.
Incorporating these ideas in our setting allows us to prove the following:

Theorem 2.6 ([82, Thm. 5.2]). Let  be a variety of algebras with the amalgamation property, such that
 has left and right uniform interpolants and subtractions. Then  has a model completion.

This theorem was subsequently extended in [128] to give a syntactic characterization of the exis-
tence of model completions in any universal class. We will return to model companions for algebras
associated to temporal logics in Section 3.1. The methods that we use there are not directly related to
uniform interpolation, but use automata theory to compute propositional quantifiers in that setting.

2.4 Outlook on uniform interpolation

In this chapter, I described some work on uniform interpolation and the computation of propositional
quantifiers in intuitionistic andmodal logics, andmade a connection between this theory and universal
algebra and model theory, through the notions of compact congruence and model companion. I will
now outline some questions and directions for further research.
The approach from [83] that I described in Section 2.1 was recently generalized by Marquès to

the class of intuitionistic compact ordered spaces in [120, Sec. 1.4]. These spaces generalize Esakia
spaces by relaxing the requirement that the space be totally-order-disconnected to only requiring that
the partial order be a closed subset of the square, while still requiring that ↓𝑈 is open for any open
subset 𝑈 . The motivation for generalizing in this way comes from the desire to allow truth values of
basic propositions to be taken in a continuous domain, such as [0, 1], rather than the discrete {0, 1}.17

Marquès develops a duality between these spaces and a continuous, [0, 1]-valued version of Heyting
algebras, and constructs co-free intuitionistic compact ordered spaces, which correspond to the type
spaces of an intuitionistic continuous propositional logic. He uses this to establish an open mapping
theorem for the spaces, following our methods in [83], and, hence, a uniform interpolation theorem
for continuous intuitionistic logic. This exciting development clearly begs for further investigation
(also see [120, Question 1.4.30]): Can the uniform interpolants for this logic also be understood in
a more syntactic way? And, recalling that Pitts’ original theorem was motivated by a question in
topos theory [139, p. 36], does this more general uniform interpolation theorem also have a geometric
interpretation?
The stratification technique that we employ in our proof in Section 2.1 is not limited to Esakia

spaces, and, as already pointed out in that section, it bears a formal similarity to the construction of
certain profinite monoids in terms of explicit approximating chains of finite monoids, as in Eq. (1.3) of
Chapter 1. What is a common framework that can capture and exploit this similarity? A line of recent
work that goes in this direction proposes game comonads to give a general framework for dealing
with ‘resource bounds’ (such as the quantifier depth of a formula, or the number of rounds in a game),
and uses these to study composition theorems like the ones mentioned in Section 1.3, see, e.g., [102].
Abramsky and Reggio [1] introduce an axiomatic categorical framework of arboreal categories for un-
derstanding game comonads and homomorphism preservation theorems, with further applications
17This idea has appeared in many forms in the logic literature, and has been variously referred to as ‘fuzzy’, ‘many-valued’

or ‘continuous’ logic. It originates with Łukaciewicz [116], Chang and Keisler [33, 34, 35], and is intensely studied in
algebraic logic [36, 131]; it has also recently been receiving renewed interest in the model theory community [92]. In
my PhD, I developed dualities and sheaf representations for algebraic structures associated to these logics [58, 61, 78].

36

2.4 Outlook on uniform interpolation

to logic given in [146]. Can these techniques also provide a framework for studying (uniform) inter-
polation theorems? Specifically, the proof-theoretic methods of Section 2.2 are amenable to proving
interpolation results for logics other than 𝐈, and there exists a fine analysis of the relationship between
sequent calculi and interpolation properties [101]. On the semantic side, there also exist applications
of duality for proving uniform interpolation of certain modal logics such as 𝐊 and 𝐆𝐋 [73, 173], but
a full understanding of when, and why, uniform interpolation holds and fails for a logic, remains to
be developed. I suggest that it would be worth investigating if some of the algebraic and categorical
techniques mentioned here could serve this purpose.
Interpolation has been studied in proof theory for various substructural logics, including linear

logic, using a technique called ‘Maehara’s method’ [167, p. 32]. In 2023, I presented the results of [56]
at a meeting of the French research community of formal structures for computation and proofs (‘GT
Scalp’), where I posed the question what might be the computational, or ‘proof-relevant’, meaning of
interpolation, and in particular uniform interpolation, in light of the sequent-based proofs discussed
in Section 2.2 above. The question was taken up enthusiastically by an IRIF colleague of mine, Alexis
Saurin, who points out in [154] that a proof-relevant interpolation theorem is essentially the same
thing as a method for introducing syntactically controlled cuts in a sequent calculus derivation. Ex-
tending this viewpoint to uniform interpolation theorems remains an open problem, that I hope to
address in future work in collaboration with Férée and Saurin.
In light of the work discussed in Section 2.2, I will now briefly comment more generally on the

activity of formalizing (also known as mechanizing or machine-checking) mathematics, in which I
have participated over the past few years in various collaborations.18 While formalization is not my
main research activity, it has been an enriching experience for me to take part in it. Formalization is a
way of practicing ‘applied logic’. As such, it is an experience that I would recommend to any logically
inclined mathematician or computer scientist to try out. The activity of formalizing often leads to
new questions and issues, ranging from the efficiency of an implementation to the organization and
distribution of software and software development.
Proof assistants come in many forms and flavors. I have so far mostly experimented with Coq/Rocq

and Lean. The latter has the distinguishing feature of having an associated mathematical library,
which is being developed in an ongoing large-scale collaborative effort [123]. Thanks to my previ-
ous experience with Coq/Rocq, I have recently been able to contribute some formalizations of results
related to Stone duality to this library. The vision behind such formalization work is a bit different
from the one underlying the results that I described in Section 2.2: Rather than verifying a particular
algorithm that leads to a usable piece of software, or machine-checking one particular mathematical
result, one contributes incrementally to the construction of a shared resource of mechanized mathe-
matical facts. Such a resource may then be used by others (humans, or, so some believe, machines [57])
in order to formalize their own theorems.
Building on the work reported on in Section 2.3, let me point out a connection between Theorem 2.4

and my recent work with Marquès on hyperdoctrines and polyadic spaces [79]. We have a covariant
functor 𝐾 Con from the category of finitely presented algebras to the category of join-semilattices,
which sends a homomorphism ℎ to ℎ∗. From the proof of Theorem 2.4, one obtains that the variety 
has right uniform restrictions if, and only if, for every homomorphism ℎ between finitely presented

18A list of my formalization activities is at https://www.samvangool.net/formal.html.

37

https://www.samvangool.net/formal.html

2 Uniform interpolation: Topology, proof theory, and compact congruences

algebras, the pullback ℎ−1 sends compact congruences to compact congruences. In other words, a
variety  is coherent if, and only if, the functor 𝐾 Con sends any homomorphism to a join-semilattice
morphismwhich has an upper adjoint. Moreover, the variety  has interpolants if, and only if, for any
injective homomorphism ℎ, these adjoints satisfy the Beck-Chevalley condition. Adopting language
of [79], a coherent variety with interpolants gives rise to a ‘semilattice-valued’ hyperdoctrine based
on the category of finitely presented algebras in  with injective homomorphisms. As a small tech-
nical point, in order to clarify the link with categorical logic, it is in fact probably more opportune to
consider the meet-semilattice 𝐾 Con(𝐴)op rather than the join-semilattice 𝐾 Con(𝐴). The property of
 having subtractions, then, means that 𝐾 Con(𝐴)op carries a Heyting implication. The hope is that
this line of thought would lead to a fibered version of the perspective taken in [73, Ch. 2], in which
the regular subobjects in the opposite of the category of finitely presented algebras play a crucial role.
I leave to future work a more in-depth exploration of this connection between uniform interpolants
and hyperdoctrines.
In Section 2.3, I also described how propositional quantifiers and uniform interpolation relate to

the existence of model companions, for instance, the existence of the model completion of the first-
order theory of Heyting algebras [72]. As mentioned there, this result means that there is a first-order
axiomatization of the class of existentially closed Heyting algebras. However, there is no concrete and
direct understanding of what it means for a Heyting algebra to be existentially closed. This is because
the naive way of extracting a concrete axiomatization out of the existence proof of [72] would go
through Pitts’ construction of propositional quantifiers, which does not admit an immediate intuitive
interpretation (recall Fig. 2.3). A line of work due to Darnière and Junker analyzes the property of
existential closedness in subvarieties of Heyting algebras, and makes interesting connections to the
model theory of rings and 𝑝-adic geometry, see [43] and [42, Ch. 2]. It would be worthwhile to see
if we can combine that work with our recently increased understanding of uniform interpolation to
better understand, and axiomatize, what it means for a Heyting algebra to be existentially closed.

38

3 Temporal logic: Model companions and
unification

We will then want to isolate general properties of the programs (defined already with the aid of the
machine model) in order to organize our deductions more clearly (the so-called “axiomatic” method).
At one level of abstraction this has already been illustrated above. To really carry out the proposal
for the “real life” situation is a big, big “program”.

– J. de Bakker & D. Scott [15, p. 30]

Alas, conditioned states are impermanent, subject to arising and decaying.

– The Sūtra on Impermanence [45]

Temporal logics allow for reasoning about situations that change over time. One of the simplest tem-
poral operators is denoted X, pronounced ‘next’, and added as a unary operation to the propositional
language considered in Chapter 2, now usually with the rules of Boolean, rather than intuitionistic,
logic. Formulas of this enriched language can be evaluated as subsets of a transition system, by which
we mean a set 𝑆 of states equipped with a binary one-step transition relation 𝑅. The semantics of X𝑝
is defined to be the set of states from which one can access, via 𝑅, a state in which 𝑝 holds.1

One may enrich the temporal language further with operators derived from this basic operation X
via fixpoint definitions. For example, the operator ‘future’, denoted F, can be defined by declaring,
for any property 𝑝, that F𝑝 be the least fixed point of the function which sends a property 𝑥 to 𝑝 ∨
X𝑥 . The intended semantics is that the property F𝑝 should hold at a state 𝑠 if, and only if, there
exists a finite 𝑅-path to a state 𝑡 where 𝑝 holds; that is, the temporal operator F should correspond
to the reflexive transitive closure of the one-step transition relation 𝑅. However, in general, it can
be challenging to prove that the natural fixpoint axioms are indeed complete with respect to these
intended semantics (see Section 3.1 below). The extension of propositional logic by X and any fixed
point formula expressible in terms of Boolean operations and X is referred to as the propositional
𝜇-calculus [15, 109], where 𝜇 is the common notation for least fixed point recursion. For instance, the
above definition of F is expressed in the 𝜇-calculus as F𝑝 def= 𝜇𝑥.(𝑝 ∨ X𝑥).
We will here be interested in a number of equational theories that are fragments of the 𝜇-calculus.

Formally, we consider extensions of the basic algebraic type of Boolean algebras by one or more
operations and a number of equations for them. We then consider questions about the decidability
and completeness of these theories. More specifically, in this chapter I will describe my contributions
to:
1Note that we do not a priori assume X to be deterministic, i.e., for us, a state in a transition system may have multiple
‘next’ states, or none at all. In this non-deterministic setting, the literature also uses, rather than X, the symbols ‘◊’ or
‘⟨𝑎⟩’, where 𝑎 ranges over an alphabet of ‘basic actions’. I use X here so as not to introduce too many different notations,
and because, below, we will often restrict to a deterministic setting, but, when we do, I will say so explicitly.

39

3 Temporal logic: Model companions and unification

1. Model-complete extensions for equational theories of linear temporal logic and fair computa-
tional tree logic (Section 3.1);

2. Decidability of the unifiability problem for the deterministic logic of next, via an algorithm on
de Bruijn graphs (Section 3.2).

3.1 Model-complete extensions of temporal theories

The decidability of monadic second-order logic on natural numbers with successor, originally due
to Büchi [28], makes use of a conversion between logic and automata. The key idea, which we also
encountered in Section 1.1, is to view interpretations of unary predicates over natural numbers as
infinite words over a suitable alphabet. One can then associate an automaton with a formula, and vice
versa, in such a way that the automaton accepts exactly those infinite words that, viewed as inter-
pretations of second-order variables, satisfy the formula. Converting a formula 𝜙 into an automaton
𝐴𝜙 and then the automaton 𝐴𝜙 again into a formula, one does not get back the same formula 𝜙, but
a formula 𝜙′ which is equivalent to 𝜙 in the intended model of the natural numbers. One may view
𝜙′ as a ‘normalization’ of 𝜙. Morally, 𝜙′ is an existential formula; although this is not formally true in
Büchi’s construction, the ‘existential nature’ of 𝜙′ is rather evident. In order to make 𝜙′ into an actual
existential formula, an enlargement of the language is needed. This enlargement is naturally obtained
by adding temporal operators to the algebraic type of the Boolean algebra (𝜔).
The work I report on in this section2 makes the observations of the previous paragraph precise.

This allows us to fit monadic second-order logic and temporal logic into the framework of modern
model-theoretic algebra, using the concepts of model-completeness and model companions already
introduced in Section 2.3.

Algebras for linear temporal logic. We recall the basic theory of algebraic structures for linear
temporal logic, comparable to the one given in, e.g., [76, §8]. These structures play the same role for
linear temporal logic as Heyting algebras played for intuitionistic logic in Chapter 2. The foundational
concept for us here is that of a deterministic modal algebra.

Definition 3.1. Amodal algebra is a structure (𝐴, ∨, ¬, ⊥, X) such that (𝐴, ∨, ¬, ⊥) is a Boolean algebra,
and X∶ 𝐴 → 𝐴 is a function that preserves finite joins, i.e., X(𝑎 ∨ 𝑏) = X𝑎 ∨ X𝑏 for every 𝑎, 𝑏 ∈ 𝐴, and
X⊥ = ⊥. A modal algebra is deterministic if, moreover, X(¬𝑎) = ¬X𝑎 for every 𝑎 ∈ 𝐴. In other words,
a deterministic modal algebra is a Boolean algebra equipped with an endomorphism.

If 𝑅 is a binary relation on a set 𝑆, then the Boolean algebra (𝑆) admits a modal algebra structure
X𝑅 ∶ (𝑆) → (𝑆), defined, for 𝑈 ∈ (𝑆), by

X𝑅(𝑈)
def= 𝑅−1[𝑈] = {𝑠 ∈ 𝑆 | there exists 𝑡 ∈ 𝑈 such that 𝑠𝑅𝑡} .

The Jónsson-Tarski representation theorem [105] implies that every modal algebra 𝐴 embeds into a
modal algebra of the form ℙ(𝑆, 𝑅) def= ((𝑆), ∪, (−)c, ∅, X𝑅), for some transition system (𝑆, 𝑅). Indeed,
given a modal algebra 𝐴, take 𝑆𝐴 to be the set of ultrafilters of 𝐴, and take 𝑅𝐴 to be the binary relation
2The work described in this section was first published as [70, 71], joint with S. Ghilardi.

40

3.1 Model-complete extensions of temporal theories

on 𝑆 defined, for any 𝑥, 𝑦 ∈ 𝑆𝐴, by 𝑥𝑅X𝑦 if, and only if, for any 𝑎 ∈ 𝑦, X𝑎 ∈ 𝑥 . Then 𝐴 admits an
injective homomorphism of modal algebras into ℙ(𝑆𝐴, 𝑅𝐴), called the canonical extension of 𝐴. For a
detailed proof, see, e.g., [21, Sec. 5.3]. The Jónsson-Tarski theorem may be seen as a consequence of
extended Stone duality for Boolean algebra with operators, also see [60, Sec. 4.4]. One may further
prove that a modal algebra of the form ℙ(𝑆, 𝑅) is deterministic, if, and only if, the relation 𝑅 is the
graph of a total function, i.e., for every 𝑠 ∈ 𝑆 there exists a unique 𝑡 ∈ 𝑆 such that 𝑠𝑅𝑡. This is an
instance of a more general theory of correspondence between modal axioms and first-order properties
on frames, see, e.g., [21, Ch. 3].
The Jónsson-Tarski theorem can be used to prove a completeness theorem for modal logic. Below,

we will extend this proof method in a number of directions, so we briefly recall how this works. A
modal formula is, by definition, a term in the algebraic type of modal algebras, and the completeness
theorem states that, if a modal formula 𝜙 is consistent (meaning that the sentence ∀𝑝̄.𝜙(𝑝̄) = ⊥ is not
derivable in the theory of modal algebras), then there exist a transition system (𝑆, 𝑅) and a valuation
𝑉 ∶ 𝑝̄ → (𝑆) so that the evaluation of 𝜙 in the modal algebra ℙ(𝑆, 𝑅) is non-empty. To prove this
theorem, if 𝜙(𝑝̄) is a consistent modal formula, note that 𝜙 ≠ ⊥ in the free modal algebra over 𝑝̄. The
Jónsson-Tarski theorem gives an embedding 𝑒 of this free modal algebra into a modal algebra of the
form ℙ(𝑆, 𝑅). Taking 𝑉 (𝑝) def= 𝑒(𝑝) for each propositional variable 𝑝, it follows that 𝜙 evaluates to 𝑒(𝜙),
which is non-empty because 𝑒 is injective and 𝜙 ≠ ⊥.
In Definition 3.2, we extend the definition of deterministic modal algebra to include a ‘Future’ and

‘Initial’ operator. The idea of this definition is to capture in an equational way the theory of the familiar
linear transition system based on 𝜔 with the successor function. The corresponding deterministic
modal algebra (𝜔) carries as its ‘Next’ operation X𝑈 def= {𝑡 ∈ 𝜔 | 𝑡 + 1 ∈ 𝑈}. To make this into a linear
temporal algebra in the sense of Definition 3.2, one defines, for any 𝑈 ∈ (𝜔), F𝑈 def= ↓𝑈 , where ↓ is
downward closure with respect to the order on 𝜔, and I def= {0}.

Definition 3.2. A linear temporal algebra3 is a deterministic modal algebra equipped with a further
unary operation F∶ 𝐴 → 𝐴 and an element I ∈ 𝐴 such that

1. for any 𝑎 ∈ 𝐴, F𝑎 = 𝑎 ∨ XF𝑎, and, for any 𝑏 ∈ 𝐴, if 𝑎 ∨ X𝑏 ≤ 𝑏, then F𝑎 ≤ 𝑏;

2. XI = ⊥ and, for any 𝑎 ∈ 𝐴, if 𝑎 ≠ ⊥ then I ≤ F𝑎.

We note that both properties in Definition 3.2 can be written as universal sentences in first-order
equational logic over the algebraic type of Boolean algebras with two additional unary operations
X, F and one additional constant I. We denote by LT the universal first-order theory of linear temporal
algebras. Since(𝜔), as defined above, is a linear temporal algebra, the full first-order theoryTh((𝜔))
of sentences true in this algebra is an extension of the universal theory LT. Our main theorem about
linear temporal algebras is the following.

Theorem 3.3. The theory Th((𝜔)) is the model companion of LT.

We may view the first-order theory of (𝜔) as the monadic second-order theory of 𝜔. Thus, in
a slogan, Theorem 3.3 says that ‘monadic second-order logic on 𝜔 is the model companion of linear
temporal logic’.
3Note that we omit the common ‘Until’ operator of linear temporal logic here, so strictly speaking we only work with the
‘Next-Future-Initial’ fragment of LTL. We do introduce an ‘Until’-type operator for the case of tree logic below.

41

3 Temporal logic: Model companions and unification

In order to establish Theorem 3.3, we need to prove two parts: (1) Any universal sentence in
Th((𝜔)) is already in LT (Corollary 3.8); (2) The theory Th((𝜔)) is model-complete (Theorem 3.9).
Part (1) boils down to proving a completeness theorem for linear temporal algebras with respect to
the transition system 𝜔, as we will see shortly. For part (2), we will use the correspondence between
monadic second-order logic on 𝜔 and automata on infinite words.

Completeness of axiomatization of linear temporal algebras. A point that distinguishes linear
temporal algebras from the deterministic modal algebras defined above is that the class of linear tem-
poral algebras is not canonical, meaning that there exists a linear temporal algebra 𝐴whose canonical
extension is no longer a linear temporal algebra, see Example 3.4. This makes the proof of complete-
ness more involved than for modal algebras.

Example 3.4. Consider the linear temporal algebra (𝜔) defined above, and let 𝐴 be the collection of
finite subsets of 𝜔 and their complements (called cofinite subsets). One verifies that 𝐴 is a subalgebra
of (𝜔), and thus a linear temporal algebra in its own right. The ultrafilters of 𝐴 are in bijection with
the ordinal 𝜔 + 1: Each 𝑛 ∈ 𝜔 gives an ultrafilter {𝑢 ∈ 𝐴 | 𝑛 ∈ 𝑢}, and there is one additional ultrafilter
∞ def= {𝑢 ∈ 𝐴 | 𝑢 is cofinite}. Thus, the canonical extension of 𝐴, as a Boolean algebra, is (𝜔+ 1), with
the embedding sending any 𝑎 ∈ 𝐴 to the set of ultrafilters that contain 𝑎. The successor function 𝑅X

𝐴

dual to the operator X sends ∞ to itself, and the relation dual to the operator F is the usual order on
𝜔 + 1. We claim that the second part of the fixed point axiom (1) in Definition 3.2 no longer holds in
the modal algebra (𝜔 + 1). Indeed, take 𝑎 def= {∞} and 𝑏 def= {∞}. The operation X on the canonical
extension (𝜔+ 1) satisfies X{∞} = (𝑅X

𝐴)−1(∞) = {∞}, and we get 𝑎 ∨X𝑏 = 𝑏. However, F{∞} = ⊤, and
thus 𝐹𝑏 ≰ 𝑏.

0 1 2 3 ∞
…

𝑎, 𝑏

Figure 3.1: The set of ultrafilters of the algebra 𝐴 in Example 3.4, with the relation 𝑅X
𝐴 drawn as arrows

and the sets 𝑎, 𝑏 as the dashed ellipse.

In topological terms, the problem in Example 3.4 arises because {∞} is a closed, non-open set of the
dual space 𝜔 + 1 of 𝐴, and the axioms of the linear temporal algebra 𝐴 are only assumed to hold for
clopen subsets of the dual space. By involving topology, as we will do now, one may recover a full
representation of linear temporal algebras.

Definition 3.5. A linear temporal space is a tuple (𝑆, 𝑠, ≤, 𝑥0), where 𝑆 is a Boolean topological space,
≤ is a preorder on 𝑆, 𝑠 ∶ 𝑆 → 𝑆 is a continuous function, and 𝑥0 ∈ 𝑆 is a point such that, for any
𝑥, 𝑦 ∈ 𝑆 and clopen 𝐾 ⊆ 𝑆,

1. {𝑥0} is clopen,

2. ↑𝑥 is closed,

3. ↓𝐾 is clopen,

4. 𝑥 ≤ 𝑠(𝑥),

5. if 𝑥 < 𝑦 then 𝑓 (𝑥) ≤ 𝑦,

6. 𝑥0 ≤ 𝑥 ,

7. 𝑠(𝑥) ≠ 𝑥0, and

8. if 𝑠−1(𝐾) ⊆ 𝐾 then ↓𝐾 ⊆ 𝐾 ,

42

3.1 Model-complete extensions of temporal theories

The dual algebra of (𝑆, 𝑠, ≤, 𝑥0) is the tuple (𝐴, X, F, I), where 𝐴 is the Boolean algebra of clopen
subsets of 𝑆, and for any 𝐾 ∈ 𝐴, X𝐾 ∶= 𝑠−1(𝐾), F𝐾 ∶= ↓𝐾 , and I ∶= {𝑥0}.

Proposition 3.6 ([71, Thm. 3.5]). For every linear temporal algebra, there exists a linear temporal space
whose dual algebra is isomorphic to 𝐴.

In the proof of Proposition 3.6, if 𝐴 is a linear temporal algebra, we consider the ultrafilter space
𝑆𝐴, with 𝑠 the function dual to X, ≤ the preorder dual to F, and 𝑥0 the unique ultrafilter containing
the atom I. For an appropriate notion of isomorphism, this is in fact the up to isomorphism unique
linear temporal space with dual algebra 𝐴. One could extend this object correspondence to a dual
equivalence of categories of linear temporal algebras and linear temporal spaces, with appropriate
morphisms, but we do not need this in what follows. Proposition 3.6 is an essential building block
towards proving the completeness of our axioms with respect the intended semantics based on 𝜔:

Theorem 3.7 ([71, Thm. 3.3]). If a term 𝑡 evaluates to ⊤ under any valuation in the linear temporal
algebra (𝜔), then 𝑡 evaluates to ⊤ under any valuation in any linear temporal algebra.

I give a rough sketch of the proof of Theorem 3.7, showing the similarity with the proof of com-
pleteness for modal algebras, referring to [71, Sec. 3] for all the details. Reasoning by contraposition,
assume that 𝑡(𝑝̄) ≠ ⊤ under some valuation 𝑉 of the variables 𝑝̄ in some linear temporal algebra 𝐴.
We use Proposition 3.6 to choose a linear temporal space (𝑆, 𝑠, ≤, 𝑥0)whose dual algebra is isomorphic
to 𝐴. The assumption on the valuation 𝑡 gives, for each variable 𝑝𝑖, a clopen subset 𝐾𝑖 of 𝑆, and hence
a clopen set J𝑡(𝐾̄)K in 𝑆 with a point 𝑥 outside it. From these data, applying standard filtration tech-
niques frommodal logic and a fine analysis of linear temporal spaces, we eventually obtain a valuation
𝑉 ′ of the variables 𝑝̄ in (𝜔) under which 𝑡 does not evaluate to ⊤.

Corollary 3.8. If a universal first-order sentence 𝜙 holds in (𝜔), then it holds in any linear temporal
algebra.

In order to deduce Corollary 3.8 from Theorem 3.7, it suffices to rewrite any universal first-order
sentence 𝜙, in the first-order theory of linear temporal algebras LT, as ∀𝑝̄.𝑡𝜙(𝑝̄) = ⊤, for some term 𝑡𝜙.
We show how to do this in [71, Lem. 3.2], using basic facts about Boolean algebra, together with the
observation that, for any term 𝑡, a negated equality 𝑡 ≠ ⊤ is in fact equivalent in LT to an equality,
namely, (I ⇒ F¬𝑡) = ⊤. (Recall that, in a Boolean algebra, 𝑎 ⇒ 𝑏 is a macro for ¬𝑎 ∨ 𝑏.)

Model-completeness of the theory of the LTL-algebra (𝜔). I will now outline the proof of:

Theorem 3.9. The first-order theory of the linear temporal algebra (𝜔) is model-complete.

Let 𝜙 be a first-order formula in the algebraic type of linear temporal algebras. We need to show
that 𝜙 is equivalent to an existential formula 𝜙′ in Th((𝜔)). Our proof proceeds according to the
following scheme.

1. Syntactically transform 𝜙 into a formula Φ of monadic second-order logic on 𝜔-words.

2. Associate to the formula Φ a Büchi automaton Φ.

3. Associate to the Büchi automaton Φ a linear temporal algebra term 𝑡 and a formula 𝜙′ that
encode its behavior.

43

3 Temporal logic: Model companions and unification

Throughout the proof, we use a correspondence between words on 𝜔 and valuations in (𝜔). Let
𝑝̄ = (𝑝1, … , 𝑝𝑛) be the propositional variables free in 𝜙, and fix 𝑃 = (𝑃1, … , 𝑃𝑛) a sequence of monadic
second-order variables of the same length. In the same way as in Section 1.1 (p. 4), a word on 𝜔 in
alphabet 2𝑃 , i.e., a function 𝑤∶ 𝜔 → 𝟐𝑃 , corresponds to a unique valuation 𝑉𝑤 ∶ 𝑝̄ → (𝜔). Indeed,
we define 𝑉𝑤(𝑝𝑖)

def= {𝑡 ∈ 𝜔 | the bit of 𝑤 at position 𝑡 at index 𝑃𝑖 is 1}.
For step 1 in the above outline, we use the standard translation from modal logic, see, e.g., [21,

Def. 2.45]. When 𝑡(𝑝̄) is a term in the algebraic type of linear temporal algebras, we define a monadic
second-order formula 𝑡̇(𝑃), in such a way that a word 𝑤∶ 𝜔 → 𝟐𝑃 is in the semantics of the formula
𝑡̇(𝑃) if, and only if, 𝑤 is in the set 𝑡(𝑉𝑤(𝑝1), … , 𝑉𝑤(𝑝𝑛)), that is, the result of evaluating 𝑡 in the linear
temporal algebra (𝜔) under the assignment 𝑉 . We extend the translation to assign, to any first-order
formula 𝜙(𝑝̄) in the algebraic type of linear temporal algebras, a monadic second-order formula Φ, in
such a way that, for any 𝑤 ∈ (Σ𝑃)𝜔, we have

(𝜔), 𝑉𝑤 ⊧ 𝜙 if, and only if, 𝑤 ∈ JΦK. (3.1)

For step 2, we make use of the following result of Büchi [28] for 𝜔-words, analogous to the result
already cited as Theorem 1.3 in Chapter 1.

Proposition 3.10. For any monadic second-order formula Φ(𝑃), there exists a finite non-deterministic
automatonΦ on the finite alphabet Σ𝑃 = 𝟐𝑃 such that

JΦK = {𝑤 ∈ (Σ𝑃)
𝜔 | Φ has a run on 𝑤 that visits a final state infinitely often.} (3.2)

A run of an automaton 𝐴 on an 𝜔-word 𝑤 is called Büchi-accepting if it visits a final state infinitely
often. Detailed proofs of Proposition 3.10 can be found in standard references on the connection
between monadic second-order logic and automata, e.g., [169, Thm. 5.9] or [91, Thm. 12.15].
For step 3, we show how to encode the behavior of a Büchi automaton as a linear temporal alge-

bra term. Let  be any finite non-deterministic automaton on the finite alphabet Σ𝑃 . Let us write
{𝑞0, … , 𝑞𝑚} for the set of states of , where 𝑞0 is the initial state. Write 𝐹 for the set of final states of
, and, for any 0 ≤ 𝑖 ≤ 𝑚 and 𝑎 ∈ Σ𝑃 , let 𝛿(𝑞𝑖, 𝑎) denote the set of states accessible from 𝑞𝑖 when
reading the letter 𝑎. We now define the following linear temporal algebra terms with variables in
{𝑝1, … , 𝑝𝑛} ∪ {𝑞0, … , 𝑞𝑚}:4

◦𝑎 def= ⋀𝑖∶ 𝑎𝑖=1 𝑝𝑖 ∧ ⋀𝑖∶ 𝑎𝑖=0 ¬𝑝𝑖 (for 𝑎 ∈ Σ𝑃),

Init
def= I ⇒ 𝑞0,

Trans
def= ⋀𝑚

𝑖=0 [𝑞𝑖 ⇒ (⋁𝑞𝑗∈𝛿(𝑞𝑖,𝑎)(◦𝑎 ∧ X𝑞𝑗))],

Part
def= ⋁𝑚

𝑖=0(𝑞𝑖 ∧ ⋀𝑗≠𝑖 ¬𝑞𝑗),

Accept
def= ⋁𝑞𝑖∈𝐹 F𝑞𝑖,

𝑡
def= Part ∧ Init ∧ Trans ∧ Accept.

These terms describe the behavior of the automaton, in the sense that, for any word 𝑤 ∈ (Σ𝑃)𝜔,

there exists a Büchi-accepting run of on 𝑤 if, and only if, (𝜔), 𝑉𝑤 ⊧ ∃𝑞̄. 𝑡 = ⊤. (3.3)

Indeed, any valuation 𝑈 ∶ {𝑞0, … , 𝑞𝑚} → (𝜔) can be seen as a potential run on the word 𝑤, where
𝑈(𝑞𝑖) denotes the set of times in 𝜔 where the run is in state 𝑞𝑖. Then, under the valuation 𝑈 , the
4Note that the symbol ‘𝑞𝑖’ is used both for a state of and for a variable in the linear temporal algebra terms.

44

3.1 Model-complete extensions of temporal theories

term Part evaluates to ⊤ in the linear temporal algebra (𝜔) if the run is in exactly one state at each
time, Init evaluates to ⊤ if 𝑤 is in the initial state at time 0, Trans evaluates to ⊤ if the run follows the
transitions of, and Accept evaluates to ⊤ if the run visits a final state infinitely often.
Combining Eq. (3.1), Eq. (3.2), and Eq. (3.3), we conclude that the formula 𝜙′ def= ∃𝑞̄. 𝑡Φ = ⊤ is an

existential formula equivalent to 𝜙 in Th((𝜔)), as required for Theorem 3.9.

Extensions to trees. In [70], we extend the above results to temporal logics on trees. The proof
follows largely a similar scheme as the proof outlined above, although some of the technical details are
much more intricate, especially in the part where we prove the completeness of the axiomatization. I
will here only briefly give the main statement and highlight the main difficulty compared to what we
already discussed above.

The characteristic difference between temporal logic on trees vs. temporal logic on words is an
additional layer of non-determinism, namely in the transition systems used for evaluating formulas.
We would like to use, as above, tree automata to express arbitrary formulas of monadic second-order
logic on trees in an existential way. The automata that we employ were introduced by [103] in the
context of the propositional 𝜇-calculus. We briefly recall the basic definitions that we need.
By a tree we mean a transition system (𝑆, 𝑅, 𝑠0), where 𝑅 is a binary relation on 𝑆 and 𝑠0 ∈ 𝑆 is such

that, for every node 𝑠 ∈ 𝑆, there is a unique finite 𝑅-path from 𝑠0 to 𝑠. When 𝑝̄ is a finite set of variables,
we call a function 𝑤∶ 𝑆 → 𝟐𝑝̄ a 𝑝̄-coloring of 𝑆. As in the case of 𝜔-words above, 𝑝̄-colorings of a tree
correspond bijectively to valuations 𝑝̄ → (𝑆). A branch in the tree is an infinite 𝑅-path.
A tree automaton5 consists of a finite set of states 𝑄, an initial state 𝑞0, a function Ω∶ 𝑄 → 𝜔, and

a function 𝛿 which associates, to any state 𝑞 ∈ 𝑄 and letter 𝑎 ∈ 𝟐𝑝̄ , a set 𝛿(𝑞, 𝑎) ⊆ (𝑄). Let (𝑆, 𝑅, 𝑠0)
be a tree with 𝑝̄-coloring 𝑤∶ 𝑆 → 𝟐𝑝̄ . A run of a tree automaton on this 𝑝̄-colored tree is a function
𝑟 ∶ 𝑆 → 𝑄 with the property that 𝑟(𝑠0) = 𝑞0, for any 𝑠 ∈ 𝑆, the set {𝑟(𝑠′) | 𝑠′ ∈ 𝑅[𝑠]} is in 𝛿(𝑟(𝑠), 𝑐(𝑠)),
and for any infinite branch (𝑠𝑡)∞𝑡=0 in 𝑆,

𝜋((𝑠𝑡)∞𝑡=0)
def= min{Ω(𝑞) | 𝑟(𝑠𝑡) = 𝑞 for infinitely many 𝑡 ∈ 𝜔} is even. (3.4)

The last condition is referred to as a parity acceptance condition and goes back toMostowski [130], who
gave these conditions as a normal form for the tree automata originally introduced by Rabin [145].
The crucial observation for our work here is that the parity acceptance condition can be expressed

in terms of a temporal logic operator on trees, that we call AF, following common acronyms from
the literature on computational tree logic with path quantifiers [50], where AF stands for: “on All
branches, at some Future point.” Indeed, note that a run 𝑟 ∶ 𝑆 → 𝑄 satisfies condition Eq. (3.4) precisely
when, for every infinite branch (𝑠𝑡)∞𝑡=0 in 𝑆 and every state 𝑞:

If Ω(𝑞) is odd and 𝑟(𝑠𝑡) = 𝑞 infinitely often, then there exists 𝑞′ with Ω(𝑞′) even, Ω(𝑞′) < Ω(𝑞),

and, for every 𝑡, there is 𝑡′ > 𝑡 such that 𝑟(𝑠𝑡′) = 𝑞′ .

We introduce a binary temporal operator AF(𝑎, 𝑏), whose intended semantics is that AF(𝑎, 𝑏) holds in
5The more usual definition of acceptance by a tree automaton (also called 𝜇-automaton) uses an acceptance game. The
definition we give here is technically only equivalent to the usual definition in the case of trees that are so called 𝜔-
expansions. Since every tree is bisimilar to an 𝜔-expansion, and we will only need to consider trees up to bisimilarity
here, this definition suffices, see [2, Lem. 2.4 & Thm. 2.5].

45

3 Temporal logic: Model companions and unification

a node 𝑠 of a tree 𝑆 if, and only if, for every infinite branch starting from 𝑠, if the property ¬𝑏 holds
infinitely often on the branch, then there exists a point on the branch where 𝑎 holds. This operator
AF allows us to express the parity condition Eq. (3.4) by saying that a number of terms of the form
AF(⋁𝑈 , ¬𝑞) evaluate to ⊤ under a valuation corresponding to the run 𝑟 , analogous to the condition
Accept in the case of 𝜔-words discussed above. The model-completeness part of our proof then goes
through relatively easily [70, Sec. 4].

However, to achieve a result analogous to Theorem 3.3 for trees, we now need to axiomatize the
new temporal binary operator AF. We start from a modal algebra (𝐴, X), and we also assume X⊤ = ⊤,
with intended meaning that ‘every node has at least one successor’. We first introduce an auxiliary
binary operator EU (‘Exists Until’), with intended semantics: EU(𝑎, 𝑏) holds in a node 𝑠 if, and only
if, there is a finite path from 𝑠 to a node 𝑡 where 𝑎 holds, such that 𝑏 holds along the entire path (but
possibly not at 𝑡). In the 𝜇-calculus, such an operator EU(𝑎, 𝑏) can be defined as

EU(𝑎, 𝑏) def= 𝜇𝑥. 𝑎 ∨ (𝑏 ∧ X𝑥) ,

a variation on our earlier fixed point definition of F, now with an additional parameter 𝑏. Given the
binary operator EU, we define a binary operator EG as the greatest fixed point

EG(𝑎, 𝑏) def= 𝜈𝑦. 𝑎 ∧ X(EU(𝑏 ∧ 𝑦, 𝑎)) .

The intended semantics of EG(𝑎, 𝑏) is that it holds in a node 𝑠 if, and only if, there exists an infinite
path along which 𝑎 always holds, and 𝑏 holds infinitely often. Finally, the operatorAF is just defined as
the De Morgan dual of EG, i.e., AF(𝑎, 𝑏) def= ¬EG(¬𝑎, ¬𝑏), which then indeed has semantics mentioned
above, assuming the semantics of EG.
We may now formalize the above ideas to define a quasi-equational theory that we call fair tree

logic, reflecting the common terminology that a ‘fairness’ side condition states that a certain property
is sastified infinitely often. We recall the definition (the corresponding theory is denotedCTL𝑓𝐼 in [70]).

Definition 3.11. A fair tree logic algebra is a tuple (𝐴, X, EU, EG, I), where (𝐴, X) is a modal algebra
with X⊤ = ⊤, EU and EG are binary operations on 𝐴 satisfying, for any 𝑎, 𝑏, 𝑐 ∈ 𝐴:

𝑎 ∨ (𝑏 ∧ XEU(𝑎, 𝑏)) ≤ EU(𝑎, 𝑏) ,

if 𝑎 ∨ (𝑏 ∧ X𝑐) ≤ 𝑐, then EU(𝑎, 𝑏) ≤ 𝑐 ,

EG(𝑎, 𝑏) ≤ 𝑎 ∧ XEU(𝑏 ∧ EG(𝑎, 𝑏), 𝑎) ,

if 𝑐 ≤ 𝑎 ∧ XEU(𝑏 ∧ 𝑐, 𝑎), then 𝑐 ≤ EG(𝑎, 𝑏) .

and I is an element of 𝐴 such that I ≠ ⊥, XEU(I, ⊤) = ⊥, and, for every 𝑎, if 𝑎 ≠ ⊥ then I ≤ EU(𝑎, ⊤).

Theorem 3.12 ([70, Thm. 4.9]). The theory of fair tree logic algebras has a model companion.

As before, the proof of Theorem 3.12 separates into two parts: First, the completeness of fair tree
logic with respect to its intended semantics; Second, a proof of model-completeness via automata. I
have explained above the essential ingredient for the second part, namely how the operator AF allows
to express the acceptance condition of automata with an existential formula. For the first part, we
prove the following theorem, analogous to Theorem 3.7, but more difficult to establish:

46

3.2 De Bruijn graphs and unification for deterministic next

Theorem 3.13. If a term 𝑡 evaluates to ⊤ under any valuation in (𝑆), with 𝑆 a tree, then 𝑡 evaluates to
⊤ in any fair tree logic algebra.

The proof of this theorem is in [70, Sec. 3], and combines the idea of Jónsson-Tarski representation
used in the linear case with an ad hoc, rather combinatorial, tableau construction. We also establish
in [70, Thm. 4.15] a variant of Theorem 3.12 for binary trees is also established. In that case, the model
companion is precisely the first-order theory of (2∗), where 2∗ is the full binary tree. Analogous to
the slogan mentioned after Theorem 3.3, this result may be summarized as, ‘monadic second-order
logic on binary trees is the model companion of fair binary tree logic’.

3.2 De Bruijn graphs and unification for deterministic next

In this section, we will study unification for temporal logics.6 We first state the general problem for an
arbitrary class of algebras, using the notations introduced in Section 2.3. Let  be a class of algebras.
A unification instance is a pair of terms (𝑠, 𝑡) in the algebraic type of, also sometimes denoted 𝑠 ≈ 𝑡.
Let (𝑠, 𝑡) be a unification instance, and denote by 𝑥̄ = (𝑥1, … , 𝑥𝑛) the variables occurring in 𝑠 or 𝑡. A
unifier of the instance (𝑠, 𝑡) is a sequence of terms 𝑢̄ = (𝑢1, … , 𝑢𝑛) such that ⊧ 𝑠[𝑥𝑖 ↦ 𝑢𝑖] ≈ 𝑡[𝑥𝑖 ↦ 𝑢𝑖].

Definition 3.14. The unifiability problem for a class of algebras  is the following computational
problem: Given as input a unification instance (𝑠, 𝑡), output a unifier of (𝑠, 𝑡), or output ‘impossible’ if
none such exists.

Since unifiers can be enumerated, the problem is clearly semi-decidable, and the first computa-
tionally interesting question is how to determine when a unification instance (𝑠, 𝑡) does not admit a
unifier. Logic provides a rich class of unifiability problems. When  is the class of Boolean algebras,
any unifiable problem always has, up to equivalence, an effectively computable most general unifier,
see, e.g., [122, Sec. 3]. This classical result admits generalizations to intuitionistic propositional logic
and transitive modal logics and, in many cases, leads to a decision procedure for the unifiability prob-
lem [66, 68]. A major open question in the area is whether or not unifiability is decidable for the
class of modal algebras. The existing methods, typically based on the idea of most general unifiers,
are known to fail here [104]. Moreover, the problem appears to be right on the edge of decidability,
as unifiability is known to be undecidable for a slight extension of modal algebras, when enriched
with a so-called universal modality [179]. For a survey of unification problems in modal logic, with
connections to description logic, we refer to [13], and we also refer to the introductions of [16, 17] for
more information about recent progress in unification for modal logic.
In this section, we outline an approach to unifiability problems for varieties of modal algebras, and

we use it to show decidability of the unifiability problem for the variety of deterministicmodal algebras
with an arbitrary number of constants. A combination of duality and step-by-step constructions gives us
a useful perspective on unifiability problems for modal logics beyond the transitive. Both ingredients
were already present in the ground-breaking series of papers on unification in transitive modal and
intuitionistic logics [66, 68], and the duality perspective on unification has been made more explicit
since then, for example in [18, 30, 67]. The step-by-step approach is an algebraic way of viewing
6This section is based on jointworkwith J.Marti that first appeared as an extended abstract in theworkshopUNIF 2023 [81],
and on ongoing joint work-in-progress with J. Marti and M. Sweering.

47

3 Temporal logic: Model companions and unification

normal forms in modal logic, systematically studied in [65] and giving rise to finite model results
in [129]. On the semantic side of the duality, this is similar to the terminal sequence for a coalgebra
functor, see e.g. [19, 180], which has also been applied to prove finite model properties [134].

Unification and free algebras. For the rest of this section, let 𝐕 denote an arbitrary variety of
modal algebras.7 We show how the unifiability problem can be phrased algebraically. First, we recall
how to express unifiers as certain homomorphisms between finitely presented algebras [69, Sec. 3].
Recall that the free 𝐕-algebra on 𝑛 variables, 𝐹𝐕(𝑥1, … , 𝑥𝑛), can be realized as the quotient of the term
algebra 𝑇 (𝑥1, … , 𝑥𝑛) under the equivalence relation that identifies two terms 𝑢 and 𝑢′ if, and only if,
⊧𝐕 𝑢 ≈ 𝑢′; we write [𝑢]𝐕 for the class of the term 𝑢 in 𝐹𝐕(𝑥1, … , 𝑥𝑛). By a slight abuse of notation,
we also sometimes just denote this class by 𝑢. Now, given a unification instance (𝑠, 𝑡) in variables
𝑥̄ = (𝑥1, … , 𝑥𝑛), let 𝐹𝐕(𝑥̄; 𝑠 ≈ 𝑡) denote the quotient of the free algebra 𝐹𝐕(𝑥̄) by the congruence
generated by the pair ([𝑠]𝐕, [𝑡]𝐕). We call two sequences of terms (𝑢1, … , 𝑢𝑛) and (𝑢′1, … , 𝑢′𝑛) equivalent
if ⊧𝐕 𝑢𝑖 ≈ 𝑢′𝑖 for every 1 ≤ 𝑖 ≤ 𝑛.

Lemma 3.15. Let (𝑠, 𝑡) be a unification instance in variables 𝑥̄ = (𝑥1, … , 𝑥𝑛). The set of equivalence
classes of unifiers for (𝑠, 𝑡) in variables 𝑦̄ = (𝑦1, … , 𝑦𝑚) is in bijection with the set of homomorphisms
from 𝐹𝐕(𝑥̄; 𝑠 ≈ 𝑡) to 𝐹𝐕(𝑦̄).

Proof. By the universal property of the quotient, the set of homomorphisms ℎ̄∶ 𝐹𝐕(𝑥̄; 𝑠 ≈ 𝑡) → 𝐹𝐕(𝑦̄) is
in bijection with the set of homomorphisms ℎ∶ 𝐹𝐕(𝑥̄) → 𝐹𝐕(𝑦̄) such that ℎ([𝑠]𝐕) = ℎ([𝑡]𝐕). The latter
set is in bijection with the set of equivalence classes of unifiers of (𝑠, 𝑡), since two homomorphisms ℎ
and ℎ′ with domain 𝐹𝐕(𝑥̄) are equal if, and only if, they agree on the set of generators 𝑥̄ .

Second, we will show that we may restrict our attention to particular unification instances and
potential unifiers. Note first that an instance (𝑠, 𝑡) is unifiable if, and only if, the instance (𝑠 ⇔ 𝑡, ⊤)
is unifiable.8 Thus, it suffices to consider instances of the form (𝜙, ⊤), for 𝜙 any term. With a slight
abuse of notation, given a term 𝜙(𝑥1, … , 𝑥𝑛), we call a sequence of terms (𝑢1, … , 𝑢𝑛) a unifier for 𝜙 if
⊧𝐕 𝜙[𝑥𝑖 ↦ 𝑢𝑖] ≈ ⊤. A unifier is called ground if it does not use any variables. Note that a term 𝜙 is
unifiable if, and only if, 𝜙 is ground-unifiable. To prove the non-trivial direction, if 𝑢̄ is a unifier for 𝜙,
then the sequence of terms 𝑣̄ = (𝑣1, … , 𝑣𝑛), where 𝑣𝑖 is obtained by substituting ⊤ (or, in general, any
constant symbol) for each variable appearing in 𝑢𝑖, is again a unifier for 𝜙; this follows immediately
from the definition of ⊧𝐕.

In light of these observations, we conclude that, for our variety of modal algebras 𝐕, the computa-
tional problem of unifiability is equivalent to the following more algebraic problem.

Definition 3.16. The algebraic unifiability problem for 𝐕 is the following computational problem:
Given as input a term 𝜙(𝑥̄), output a homomorphism 𝐹𝐕(𝑥̄; 𝜙 ≈ ⊤) → 𝐹𝐕(∅), or output ‘impossible’ if
none such exists.

The interest of this reformulation of unifiability as an algebraic problem is that it allows us to
dualize it into a coalgebraic problem, as we will do below in the specific case where 𝐕 is the variety of
deterministic modal algebras. More precisely, we will consider the unifiability problemwith constants,
7Some results discussed here hold more generally, but this level of generality suffices for our intended application.
8The notation 𝑠 ⇔ 𝑡 is shorthand for the term (𝑠 ⇒ 𝑡) ∧ (𝑡 ⇒ 𝑠).

48

3.2 De Bruijn graphs and unification for deterministic next

also sometimes called parameters in the literature. Algebraically, this means that we fix a natural
number 𝑘, we enrich the algebraic type of 𝐕 with 𝑘 new constant symbols, 𝑝1, … , 𝑝𝑘 , and we define
𝐕(𝑘) to be the variety of algebras (𝐴, 𝑎1, … , 𝑎𝑘), where 𝐴 is an algebra in 𝐕 and, for each 1 ≤ 𝑖 ≤ 𝑘, 𝑎𝑖 is
an element of 𝐴 that interprets the constant symbol 𝑝𝑖. Then, the unifiability problem with 𝑘 constants
for 𝐕 is, by definition, the unifiability problem for 𝐕(𝑘).
Let 𝐗 denote the variety of deterministic modal algebras (Definition 3.1). Our main theorem is the

following.

Theorem 3.17. For any 𝑘, the unifiability problem with 𝑘 constants for 𝐗 is decidable.

In order to solve the algebraic version of the unifiability problem given in Definition 3.16, our
construction proceeds in two steps:

1. We show that the algebraic unifiability problem for 𝐗 admits an exponential time reduction to
a graph-theoretic problem on homomorphisms between de Bruijn graphs;

2. We show that the de Bruijn graph homomorphism problem is decidable in exponential time.

It will follow that our algorithm has a time complexity that is doubly exponential in the size of the
input. Before proceeding with the general description of our algorithm, we give a few examples of
unification instances in 𝐗 with constants.

Example 3.18. Consider the system of temporal equations in variables 𝑥, 𝑦, with constant symbol 𝑝:

⎧⎪⎪
⎨⎪⎪⎩

𝑥 ≈ ¬X𝑝 ∧ XX(𝑥 ∨ 𝑦)

𝑦 ≈ 𝑥 ⇒ 𝑝
(3.5)

A substitution that unifies the two equations in Eq. (3.5) is the same thing as a substitution that makes
the formula

[𝑥 ⇔ (¬X𝑝 ∧ XX(𝑥 ∨ 𝑦))] ∧ [𝑦 ⇔ (𝑥 ⇒ 𝑝)] (3.6)

equivalent to ⊤. In this case, there turns out to be a unique such substition. One may deduce this
syntactically by first noting that a unifier of 𝑦 ⇔ (𝑥 ⇒ 𝑝)must make 𝑥 ∨ 𝑦 equivalent to 𝑥 ∨ (𝑥 ⇒ 𝑝),
which is equivalent to ⊤. Thus, such a unifier must make ¬X𝑝 ∧ XX(𝑥 ∨ 𝑦) equivalent to ¬X𝑝 ∧ XX⊤,
which is in turn equivalent to ¬X𝑝. This means that the only possible substitution 𝜎 must send
the variable 𝑥 to ¬X𝑝, and 𝑦 to ¬X𝑝 ⇒ 𝑝. One then verifies that this is indeed a unifier. We give
another interpretation of this example, via graph homomorphisms, in Example 3.27 below. For a
negative example, the equation 𝑥 ≈ ¬X𝑥 does not have a unifier. We will also explain a proof of this
in Example 3.27 below.

Flattening. We now show one further syntactic simplification that we can make on our unification
instances. We call a term 𝜙 in the algebraic type of 𝐗(𝑘) affine if it is equivalent to a Boolean com-
bination of variables, constants, and terms of the form X𝑥𝑖, for 𝑥𝑖 a variable. A term is affine if, and
only if, every variable occurs under the scope of at most one occurrence of X, and no constant occurs
under the scope of X. For example, the term (¬𝑝 ∨ X𝑥) ∧ X⊤ is affine, while the terms X(𝑝 ∨ 𝑥) and
X(𝑥 ∧X¬𝑦) are not affine. We now set out to show that, for any𝐗(𝑘)-term 𝜙, we can construct an affine
term 𝜙′ such that the set of unifiers of 𝜙 is in bijection with the set of unifiers of 𝜙′. We do this by a

49

3 Temporal logic: Model companions and unification

syntactic procedure called flattening. The term 𝜙′ will in general use more variables than 𝜙, although
no more than the number of constants plus the number of occurrences of X in 𝜙. Let 𝜙 be an arbitrary
𝐗(𝑘)-term. We first show the idea of the flattening transformation in an example.

Example 3.19. Consider the non-affine term 𝜙0 = X(X𝑝 ∧ X¬(𝑥 ∨ 𝑝)). We show how to suc-
cessively transform it into an affine term, while preserving unifiers. (The process is illustrated as
a transformation of syntax trees in Figure 3.2.) We first introduce one new variable 𝑦 and define
𝜙1

def= X(X𝑦 ∧X¬(𝑥 ∨ 𝑦)) and 𝜓1
def= 𝑝 ⇔ 𝑦. This ensures that no constants occur under the scope of X,

and unifiers of 𝜙1∧𝜓1 are essentially the same thing as unifiers of 𝜙0, since theymust send 𝑦 to 𝑝. Now,
the next ‘problem’ that prevents 𝜙1 from being affine is the subformula X𝑦, which is under the scope
of another X. We introduce a variable 𝑧1 and set 𝜙2

def= X(𝑧1 ∧ X¬(𝑥 ∨ 𝑦)) and 𝜓2
def= 𝜓1 ∧ (𝑧1 ⇔ X𝑦).

Any unifier of 𝜓2 must send 𝑧1 to a formula that is equivalent to X𝑦, and thus, if it also unifies 𝜙2, then
it unifies 𝜙1. Conversely, any unifier of 𝜙1 ∧ 𝜓1 extends uniquely to a unifier of 𝜙2 ∧ 𝜓2, by sending
𝑧1 to the term obtained by applying the given unifier to X𝑦. The last problematic subformula in 𝜙2 is
X¬(𝑥 ∨ 𝑦), so we define 𝜙3

def= X(𝑧1 ∧ 𝑧2) and 𝜓3 = 𝜓2 ∧ (𝑧2 ⇔ X¬(𝑥 ∨ 𝑦)). By the same argument as
before, unifiers of 𝜙3 ∧ 𝜓3 are in bijection with unifiers of 𝜙2 ∧ 𝜓2. We note that 𝜙3 ∧ 𝜓3 is an affine
term.

𝜙0
X

∧

X

𝑝

X

¬

∨

𝑥 𝑝

𝜙1
X

∧

X

𝑦

X

¬

∨

𝑥 𝑦

𝜓1 : 𝑦 ⇔ 𝑝

𝜙2
X

∧

𝑧1 X

¬

∨

𝑥 𝑦

𝜓2 : 𝑦 ⇔ 𝑝 ∧
𝑧1 ⇔ X𝑦

𝜙3
X

∧

𝑧1 𝑧2

𝜓3 : 𝑦 ⇔ 𝑝 ∧
𝑧1 ⇔ X𝑦 ∧

𝑧2 ⇔ X¬(𝑥 ∨ 𝑦)

Figure 3.2: Flattening a formula.

To formalize the idea of Example 3.19, let 𝜙0(𝑥̄) be an arbitrary 𝐗(𝑘)-term. We construct a sequence
of terms (𝜙𝑟)𝑅𝑟=0 and a sequence of affine terms (𝜓𝑟)𝑅𝑟=0 in such a way that the unifiers of the term 𝜙𝑟 ∧𝜓𝑟
are in bijection with the unifiers of 𝜙𝑟+1∧𝜓𝑟+1, and moreover 𝜙𝑅 will be affine. Let 𝜙0

def= 𝜙 and 𝜓0 = ⊤.
First, we introduce a new variable 𝑦𝑗 for each constant symbol 𝑝𝑗 , and we define 𝜙1

def= 𝜙[𝑝𝑗 ↦ 𝑦𝑗],
𝜓1

def= ⋀𝑛
𝑗=1(𝑦𝑗 ⇔ 𝑝𝑗). Note that any unifier of 𝜓1 must send the variable 𝑦𝑗 to 𝑝𝑗 , and therefore, if it is

also a unifier of 𝜙1, then its restriction to 𝑥̄ is a unifier of 𝜙. Conversely, any unifier of 𝜙 extends to a
unifier of 𝜙1 ∧ 𝜓1 by sending 𝑦𝑗 to 𝑝𝑗 . Further note that in 𝜙1 ∧ 𝜓1, no constant occurs under the scope
of X, and we will maintain this property throughout the rest of the construction. Now, at stage 𝑟 ≥ 1,
if 𝜙𝑟 is affine, we are done. Otherwise, there must be a variable in 𝜙𝑟 that is under the scope of more

50

3.2 De Bruijn graphs and unification for deterministic next

than one occurrence of X. Let 𝜃 be the maximal subterm of 𝜙𝑟 containing this variable occurrence
and no occurrence of X. It follows that X𝜃 is also a subterm of 𝜙𝑟 . We define 𝜙𝑟+1 to be term obtained
by replacing this subterm X𝜃 by a new variable 𝑧𝑟 , and we let 𝜓𝑟+1

def= 𝜓𝑟 ∧ (𝑧𝑟 ⇔ X𝜃). Note that X𝜓
is affine by construction, so that 𝜓𝑟+1 remains affine. A unifier of 𝜙𝑟+1 ∧ 𝜓𝑟+1 must send 𝑧𝑟 to a term
that is equivalent to X𝜃. Therefore, its restriction to all the variables except 𝑧𝑟 is a unifier of 𝜙𝑟 ∧ 𝜓𝑟 .
Conversely, a unifier of 𝜙𝑟 ∧ 𝜓𝑟 extends uniquely to a unifier of 𝜙𝑟+1 ∧ 𝜓𝑟+1 by sending 𝑧𝑟 to the result
of applying the unifier to X𝜓. Since 𝜙𝑟+1 is ‘one step closer’ to being affine than 𝜙𝑟 , this procedure
eventually terminates.
We conclude that we may assume that all unification instances are affine, at the expense of introduc-

ing a number of fresh variables, which is linear in the size of the input formula.

The free deterministic modal algebra and de Bruijn graphs. Fix a finite sequence of constant
symbols 𝑝1, … , 𝑝𝑘 , 𝑘 ≥ 1. For any 𝑛 ≥ 0, we will write 𝑛

def= {𝑥1, … , 𝑥𝑛, 𝑝1, … , 𝑝𝑘}, where 𝑥1, … , 𝑥𝑛 are
𝑛 distinct variables. A natural first step in studying the unifiability problem for 𝐗(𝑘) is to describe the
free algebra 𝐹𝐗(𝑘)(𝑥̄), for 𝑥̄ = (𝑥1, … , 𝑥𝑛) a finite set of variables. We now show that this algebra has a
simple form: It is a free Boolean algebra on a countable set of generators.

Proposition 3.20. The set of terms

𝑛
def= {X𝑡𝑐 | 𝑐 ∈ 𝑛, 𝑡 ≥ 0}

freely generates 𝐹𝐗(𝑘)(𝑥1, … , 𝑥𝑛) as a Boolean algebra.

Proof. Since X is a Boolean endomorphism, in any term, all occurrences of the operation X can be
pushed down to the level of variables. Thus, the given set is generating. To see that it is freely gener-
ating, it suffices (see, e.g., [107, Prop. 9.4]) to prove that for any finite disjoint subsets 𝐹 , 𝐺 of the set
of generators 𝑛, we have ⋀𝑓 ∈𝐹 𝑓 ∧ ⋀𝑔∈𝐺 ¬𝑔 ≠ ⊥ in the algebra 𝐹𝐗(𝑘)(𝑥1, … , 𝑥𝑛). For this, it suffices
to construct some deterministic modal algebra and a valuation of the variables and constants in it
such that this term does not evaluate to ⊥. To this end, we use the deterministic modal algebra (𝜔)
introduced in Section 3.1, and, for any 𝑐 ∈ 𝑛, define 𝑉 (𝑐) to be the set of those 𝑡 ≥ 0 such that X𝑡𝑐 ∈ 𝐹 .
Observe that, under this valuation 𝑉 , the evaluation of the term ⋀𝑓 ∈𝐹 𝑓 ∧ ⋀𝑔∈𝐺 ¬𝑔 will contain the
point 0, and is thus non-empty.

For the algebraic unifiability problem, we are interested in the existence of certain homomorphisms
𝐹𝐗(𝑘)(𝑥̄) → 𝐹𝐗(𝑘)(∅). To study this question, we now use extended Stone duality. The free Boolean
algebra generated by a set  is isomorphic to the Boolean algebra of clopen sets of generalized Cantor
space 𝟐 [60, Cor 4.12]. We apply this fact to the Boolean algebra 𝐹𝐗(𝑘)(𝑥̄) = 𝐹𝐁𝐀(𝑛), with 𝑛 as
in Proposition 3.20, and choose the Boolean algebra isomorphism (̂⋅) from 𝐹𝐗(𝑘)(𝑥̄) to the algebra of
clopen subsets of 𝟐𝑛 which is defined by sending 𝑔 ∈ 𝑛 to

𝑔 def= {𝑤 ∈ 𝟐𝑛 | 𝑤𝑔 = 1} .

In order to facilitate notation below, we will write, for 𝑡 ≥ 0 and 𝑐 ∈ 𝑛, 𝑤𝑡,𝑐 for the value of 𝑤 ∈ 𝟐𝑛 at
the term X𝑡𝑐. We may thus think of 𝑤 as an 𝜔-indexed word over the alphabet 𝟐𝑛 . With this notation,
X̂𝑡𝑐 is the set of 𝑤 such that 𝑤𝑡,𝑐 = 1.

51

3 Temporal logic: Model companions and unification

Transporting the Boolean algebra endomorphism X on 𝐹𝐗(𝑘)(𝑥̄) through the Boolean algebra iso-
morphism (̂⋅) gives an endomorphism 𝑠−1 on the Boolean algebra of clopen subsets of 𝟐𝑛 , where
𝑠 ∶ 𝟐𝑛 → 𝟐𝑛 is the continuous function that sends 𝑤 ∈ 𝟐𝑛 to 𝑠(𝑤) ∈ 𝟐𝑛 defined by

𝑠(𝑤)𝑡,𝑐
def= 𝑤𝑡+1,𝑐 , for each 𝑐 ∈ 𝑛 . (3.7)

Let  (𝑘) denote the category of deterministic modal algebras with 𝑘 constants, with morphisms the
Boolean algebra homomorphisms preserving both X and the 𝑘 constants. Let  denote the category
of tuples (𝑆, 𝑠, 𝑃1, … , 𝑃𝑘), where 𝑆 is a Boolean space, 𝑠 ∶ 𝑆 → 𝑆 is a continuous function, and, for
each 1 ≤ 𝑗 ≤ 𝑘, 𝑃𝑗 is a clopen subset of 𝑆. A morphism 𝛼∶ (𝑆, 𝑠, 𝑃1, … , 𝑃𝑘) → (𝑆′, 𝑠′, 𝑃 ′1, … , 𝑃 ′𝑘) is a
continuous invariant function 𝛼∶ 𝑆 → 𝑆′, that is, it satisfies 𝛼 ◦ 𝑠 = 𝑠′ ◦ 𝛼, and for each 1 ≤ 𝑗 ≤ 𝑘,
𝛼−1(𝑃 ′𝑗) = 𝑃𝑗 . Then  (𝑘) is dually equivalent to  , so we have a bijection

Hom(𝟐0 , 𝟐𝑛)
≅→ Hom (𝑘)(𝐹𝐗(𝑘)(𝑥̄), 𝐹𝐗(𝑘)(∅)) , (3.8)

which sends a continuous invariant function 𝛼∶ 𝟐0 → 𝟐𝑛 to the unique homomorphism ℎ𝛼 ∶ 𝐹𝐗(𝑘)(𝑥̄) →
𝐹𝐗(𝑘)(∅) that satisfies ℎ̂𝛼(𝜙) = 𝛼−1(𝜙) for every term 𝜙(𝑥̄).
Now observe that, if 𝜙 ≈ ⊤ is a unification instance, then under the bijection in Eq. (3.8), the

functions 𝛼 such that ℎ𝛼(𝜙) = ⊤ are exactly those for which 𝛼−1(𝜙) = 𝟐0 , that is, im(𝛼) ⊆ 𝜙. To sum
up, we have proved the following:

Proposition 3.21. For any term 𝜙(𝑥̄) in the algebraic type of 𝐗(𝑘), there is a bijective correspondence
between the set of ground unifiers for 𝜙 and the set of continuous invariant functions 𝛼∶ 𝟐0 → 𝟐𝑛 such
that im(𝛼) ⊆ 𝜙.

Remark 3.22. In the work that we discuss here, we only address the decidability question of existence
of unifiers, so we only need the corollary of Proposition 3.21 that one of the sets is non-empty if, and
only if, the other one is. In future work, we hope to exploit Proposition 3.21 to perform a finer analysis
of the structure of unifiers.

To make Proposition 3.21 more directly useful, we now first interpret the invariance conditions in
the specific case of a continuous function 𝛼∶ 𝟐0 → 𝟐𝑛 . In light of Eq. (3.7), the condition 𝛼 ◦ 𝑠 = 𝑠′ ◦ 𝛼
is equivalent to:

for any 𝑤 ∈ 𝟐0 , 𝑡 ≥ 0 and 𝑐 ∈ 𝑛, 𝛼(𝑠(𝑤))𝑡,𝑐 = 𝛼(𝑤)𝑡+1,𝑐 . (3.9)

Also, since the 𝑗 th clopen set 𝑃𝑗 in the space 𝟐𝑛 is by definition 𝑝𝑗 , the condition 𝛼−1(𝑃 ′𝑗) = 𝑃𝑗 becomes:

for any 𝑤 ∈ 𝟐0 , 𝛼(𝑤)0,𝑝𝑗 = 𝑤0,𝑝𝑗 , for every 1 ≤ 𝑗 ≤ 𝑘. (3.10)

Continuous functions satisfying Eq. (3.9) and Eq. (3.10) are ar special case of the sliding block codes
studied in symbolic dynamics, see, e.g., [8, Prop. 5.4.1]. It is well-known that such functions can
be defined by specifying only a finite amount of information, which is important to be able to use
Proposition 3.21 to devise an algorithm for unifiability. I will now give a simple direct proof of this
fact for our specific setting here. In the following proposition, when 𝐹 ⊆ 0 and 𝑢 ∈ 𝟐0 , we write 𝑢↾𝐹
for the restriction of 𝑢 to a word in 𝟐𝐹 . For any 𝑑 ≥ 0, let 𝑑0

def= {X𝑡𝑝 | 0 ≤ 𝑡 < 𝑑, 𝑝 ∈ 0}.

52

3.2 De Bruijn graphs and unification for deterministic next

Proposition 3.23. Let 𝐹 ⊆ 0 be a finite subset containing 0, and let 𝑓 ∶ 𝟐𝐹 → 𝟐𝑛 be a function such
that 𝑓 (𝑢)0,𝑝 = 𝑢0,𝑝 for all 𝑢 ∈ 𝟐𝐹 and 𝑝 ∈ 0. Then the function 𝑓 ∶ 𝟐0 → 𝟐𝑛 , defined, for 𝑤 ∈ 𝟐0 , by

𝑓 (𝑤)𝑡,𝑐
def= 𝑓 (𝑠𝑡(𝑤)↾𝐹)0,𝑐 (𝑡 ≥ 0, 𝑐 ∈ 𝑛)

is a continuous invariant function. Moreover, any continuous invariant function 𝛼∶ 𝟐0 → 𝟐𝑛 is equal
to 𝑓 for some 𝑑 ≥ 0 and 𝑓 ∶ 𝟐𝑑0 → 𝟐𝑛 .

Proof. To see that the function 𝑓 is continuous, it suffices to check that each coordinate projection of 𝑓
is continuous. Indeed, for any 𝑡 ≥ 0 and 𝑐 ∈ 𝑛, the function 𝜋𝑡,𝑐◦𝑓 is equal to the composition of contin-
uous functions 𝜋0,𝑐◦𝑓 ◦(−)↾𝐹 ◦ 𝑠𝑡 . To see that 𝑓 is invariant, we check conditions Eq. (3.9) and Eq. (3.10).
For any 𝑤 ∈ 𝟐0 , 𝑡 ≥ 0 and 𝑐 ∈ 𝑛, we have

𝑓 (𝑠(𝑤))𝑡,𝑐 = 𝑓 (𝑠𝑡+1(𝑤)↾𝐹)0,𝑐 = 𝑓 (𝑤)𝑡+1,𝑐 ,

and, when 𝑐 = 𝑝𝑗 , we have, by the assumption on 𝑓 , that

𝑓 (𝑤)0,𝑝𝑗 = 𝑓 (𝑤↾𝐹)0,𝑝𝑗 = 𝑤0,𝑝𝑗 .

For the moreover statement, let 𝛼∶ 𝟐0 → 𝟐𝑛 be a continuous invariant function. The function
𝛼̃ ∶ 𝟐0 → 𝟐𝑛 defined by 𝛼̃(𝑤) def= 𝛼(𝑤)↾𝑛 is still continuous. Since 𝟐𝑛 is finite, for any 𝑢 ∈ 𝟐𝑛 , the set
𝛼̃−1(𝑢) is clopen, so it is a Boolean combination of a finite number of sets of the form 𝑔 , where 𝑔 ∈ 𝑛.
We may therefore pick a finite subset 𝐹 of 𝑛 such that, for every 𝑢 ∈ 𝟐𝑛 , the set 𝛼̃−1(𝑢) is a Boolean
combination of sets of the form 𝑔 , with 𝑔 ∈ 𝐹 . It follows that, for any 𝑤, 𝑤′ ∈ 𝟐0 , if 𝑤↾𝐹= 𝑤′↾𝐹 , then
𝛼̃(𝑤) = 𝛼̃(𝑤′). Pick 𝑑 ≥ 0 sufficiently large so that 𝐹 ⊆ 𝑑0 . The choice of 𝐹 and 𝑑 then allows us to
choose a function 𝑓 ∶ 𝟐𝑑0 → 𝟐𝑛 such that 𝑓 (𝑤↾𝑑0) = 𝛼̃(𝑤) for all 𝑤 ∈ 𝟐0 . The fact that 𝛼 verifies
Eq. (3.10) immediately implies that 𝑓 (𝑢)0,𝑝 = 𝑢0,𝑝 for all 𝑢 ∈ 𝟐𝑑0 and 𝑝 ∈ 0. To see that 𝑓 = 𝛼, we
calculate, for any 𝑡 ≥ 0 and 𝑐 ∈ 𝑛,

𝑓 (𝑤)𝑡,𝑐 = 𝑓 (𝑠𝑡(𝑤)↾𝑑0)0,𝑐 = 𝛼̃(𝑠𝑡(𝑤))0,𝑐 = 𝛼(𝑠𝑡(𝑤))0,𝑐 = 𝛼(𝑤)𝑡,𝑐

where the last equality holds by repeated application of Eq. (3.9).

In order to complete the first step of our unification algorithm, which reduces the algebraic unifi-
cation problem to a finite graph problem, we need to understand which functions 𝑓 ∶ 𝟐𝐹 → 𝟐𝑛 are
such that im(𝑓) ⊆ 𝜙. As explained above, we may assume that 𝜙 is affine. Let us write 𝑉𝑛

def= 𝟐{𝑥1,…,𝑥𝑛}

and Σ def= 𝟐{𝑝1,…,𝑝𝑘}. We write 𝜙 in disjunctive normal form: For any 𝑢 ∈ 𝑉𝑛, write ∙𝑢
def= ⋀𝑖∶ 𝑢(𝑥𝑖)=1 𝑥𝑖 ∧

⋀𝑖∶ 𝑢(𝑥𝑖)=0 ¬𝑥𝑖, and similarly for any 𝑎 ∈ Σ, write ◦𝑎 def= ⋀𝑖∶ 𝑎(𝑥𝑖)=1 𝑝𝑖 ∧⋀𝑖∶ 𝑢(𝑎𝑖)=0 ¬𝑝𝑖. Then 𝜙 is equiva-
lent to

⋁{X(∙𝑣) ∧ (◦𝑎) ∧ (∙𝑢) | (𝑢, 𝑎, 𝑣) ∈ 𝐸𝜙}

where 𝐸𝜙
def= {(𝑣, 𝑎, 𝑢) ∈ 𝑉𝑛 × Σ × 𝑉𝑛 | ⊧𝐗(𝑘) [X(∙𝑣) ∧ (◦𝑎) ∧ (∙𝑢)] ⇒ 𝜙 ≈ ⊤}. Note that it may be checked

whether or not (𝑣, 𝑎, 𝑢) ∈ 𝐸𝜙, for example by checking whether 𝜙 is true in a linear transition system
on two states, where ∙𝑢 and ◦𝑎 hold in the root, and ∙𝑣 holds in the successor of the root; for a single
triple, this can be done in polynomial time, and there are exponentially many triples to consider, so

53

3 Temporal logic: Model companions and unification

the entire set 𝐸𝜙 can be computed within exponential time.
It follows that, for a given 𝑓 ∶ 𝟐𝑑0 → 𝟐𝑛 as in Proposition 3.23, we have im(𝑓) ⊆ 𝜙 if, and only

if, for every 𝑤 ∈ 𝟐0 , there exists (𝑣, 𝑎, 𝑢) ∈ 𝐸𝜙 such that 𝑓 (𝑤) is an element of the clopen set that
represents the term X(∙𝑣) ∧ (◦𝑎) ∧ (∙𝑢). The condition that 𝑓 (𝑤) is in the clopen set ̂X(∙𝑣) ∧ (◦𝑎) ∧ (∙𝑢)
can be expressed more directly in terms of 𝑓 : Unraveling the definitions, we see that it is verified if,
and only if, for any variable 𝑥 and constant 𝑝,

𝑓 (𝑠(𝑤)↾𝑑0)0,𝑥 = 𝑣𝑥 , 𝑤0,𝑝 = 𝑓 (𝑤)0,𝑝 = 𝑎𝑝 , 𝑓 (𝑤↾𝑑0)0,𝑥 = 𝑢𝑥 . (3.11)

We now show that Eq. (3.11) is equivalent to a graph homomorphism condition. Here, by graph we
will always mean a finite directed graph with Σ-labeling on the edges, i.e., a pair 𝐺 = (𝑉𝐺, 𝐸𝐺) with
𝑉𝐺 a finite set and 𝐸𝐺 ⊆ 𝑉𝐺 × Σ × 𝑉𝐺. We often write 𝑥 𝑎→ 𝑦 to mean (𝑥, 𝑎, 𝑦) ∈ 𝐸𝐺, and we extend this
notation to paths, writing, for 𝑤 ∈ Σ+, 𝑥 𝑤→ 𝑦 if there exists a 𝑤-labeled path in 𝐺 starting in 𝑥 and
ending in 𝑦. A homomorphism from a graph (𝑉𝐺, 𝐸𝐺) to a graph (𝑉𝐻 , 𝐸𝐻) is a function 𝑓 ∶ 𝑉𝐺 → 𝑉𝐻
such that, for any 𝑥, 𝑦 ∈ 𝑉𝐺 and 𝑎 ∈ Σ, if 𝑥 𝑎→ 𝑦, then 𝑓 (𝑥) 𝑎→ 𝑓 (𝑦). We recall the definition of the
sequence of de Bruijn graphs [26, 152].

Definition 3.24. The de Bruijn graph of dimension 𝑑 ≥ 1 over alphabet Σ is the graph 𝐵𝑑(Σ) = (Σ𝑑 , 𝑆𝑑)
with set of nodes Σ𝑑 and edge relation defined as

𝑆𝑑
def= {(𝑏𝛼, 𝑎, 𝛼𝑎) ∣ 𝑎, 𝑏 ∈ Σ, 𝛼 ∈ Σ𝑑−1} ⊆ Σ𝑑 × Σ × Σ𝑑 .

In Fig. 3.3, we show the de Bruijn graph 𝐵3 of dimension 3 for Σ = {0, 1}.

000 111010 101

001 011

110100

0 1
1

0

1 1

00

1

0

1

0

01

0

0 1

1

Figure 3.3: The de Bruijn graph 𝐵3({0, 1}).

The De Bruijn graph can be viewed as a deterministic automaton that ‘remembers’ the last 𝑑 letters
of an input word: Indeed, from any start node, there is a unique path labeled by 𝑤 ∈ Σ∗, and if 𝑤 is of
length at least 𝑑, then the node reached by this unique path is the length 𝑑 suffix of 𝑤. In what follows,
when a finite alphabet Σ is clear from the context, we write 𝐵𝑑 for 𝐵𝑑(Σ).
To explain the connection with our unification problem for 𝐗(𝑘), we note that an element 𝑤 of

𝟐𝑑0 may be viewed as a node 𝑤 of Σ𝑑 , where Σ = 𝟐{𝑝1,…,𝑝𝑘}, as follows. For 1 ≤ 𝑡 ≤ 𝑑, the letter
in 𝑤 at position 𝑡 counting from the right9 is the bit-string in Σ whose 𝑗 th bit has value 𝑤𝑡,𝑝𝑗 , for
every 1 ≤ 𝑗 ≤ 𝑘. We claim that, then, the edges of the de Bruijn graph 𝐵𝑑 are exactly the triples of
the form (𝑠(𝑤)↾𝑑0 , 𝑎, 𝑤↾𝑑0), where 𝑤 is any element of 𝟐0 . We give an example illustrating this fact
9We here start counting positions from the right, following the convention in the de Bruijn graph literature that the ‘most
recent’ bits of information are added onto the right of the word.

54

3.2 De Bruijn graphs and unification for deterministic next

when 𝑘 = 1 (we write 𝑝 for the only constant), so that Σ = {0, 1}. Let 𝑤 be the element of 𝟐0 that
starts (𝑝 ↦ 1, X𝑝 ↦ 1, X2𝑝 ↦ 0, X3𝑝 ↦ 1), and then has only zeros. The element 𝑠(𝑤) starts with
(𝑝 ↦ 1, X𝑝 ↦ 0, X2𝑝 ↦ 1), and then has only zeros. Then 𝑤↾30 is the node 011, and 𝑠(𝑤)↾30 is the
node 101, and we indeed have an edge (101, 1, 011) in 𝐵3({0, 1}).
For any function 𝑓 ∶ 𝟐𝑑0 → 𝟐𝑛 , we now also write 𝑓 for the function Σ𝑑 → 𝑉𝑛 which is defined by

sending, for any 𝑤 ∈ 𝟐𝑑0 , the node 𝑤̃ ∈ Σ𝑑 to 𝑓 (𝑤)↾{𝑥1,…,𝑥𝑛}. Then, using the observation of the previous
paragraph, Eq. (3.11) holds for 𝑓 if, and only if, 𝑓 is a homomorphism from the de Bruijn graph 𝐵𝑑 to
the graph (𝑉𝑛, 𝐸𝜙). We conclude:

Proposition 3.25. An affine 𝐗(𝑘)-term 𝜙 is ground-unifiable if, and only if, for some 𝑑 ≥ 1, there exists
a homomorphism from 𝐵𝑑 to (𝑉𝑛, 𝐸𝜙).

Thus, the unifiability problem for 𝐗(𝑘) has an exponential-time reduction to the following problem.

Definition 3.26. Let Σ a finite alphabet. The de Bruijn graph mapping problem over Σ is the following
computational problem: Given as input a finite directed graph 𝐺 with edge-labeling from Σ, output a
number 𝑑 ≥ 1 and a homomorphism from 𝐵𝑑(Σ) to 𝐺, or output ‘impossible’ if none such exists.

Example 3.27. We revisit the examples of Example 3.18. To make the computations in the first
example a bit simpler, we already use the first observation from Example 3.18, that XX(𝑥 ∨ 𝑦) will
necessarily be unifiedwith⊤ by any solution, so that the unification instance, after flattening, becomes

𝜙 def= [𝑥 ⇔ (¬X𝑧)] ∧ [𝑦 ⇔ (𝑥 ⇒ 𝑝)] ∧ [𝑧 ⇔ 𝑝] .

One may compute that the set 𝐸𝜙 contains 16 triples, and that 4 nodes that appear as start nodes of
edges. If a node does not appear as a start node of an edge, then we can clearly discard it from the
graph, as it can never be reached by a homomorphism from a de Bruijn graph. Making this further
reduction, we obtain a graph on just 4 nodes, with 8 edges, depicted on the left in Fig. 3.4. We write,
for instance, 𝑥¬𝑦¬𝑧 for the node (𝑥 ↦ 1, 𝑦 ↦ 0, 𝑧 ↦ 0) in 𝑉3.

¬𝑥𝑦¬𝑧¬𝑥𝑦𝑧

𝑥𝑦𝑧 𝑥¬𝑦¬𝑧1

1 1
0 0

0

1
0

𝑥 ¬𝑥
0, 1

0, 1

Figure 3.4: The graphs associated to the formulas 𝜙 and 𝜓 of Example 3.27.

One may now check that the graph on the left in Fig. 3.4 admits a unique homomorphism from the
de Bruijn graph 𝐵2, namely, the function 𝑓 defined by (00 ↦ 𝑥¬𝑦¬𝑧, 01 ↦ 𝑥𝑦𝑧, 10 ↦ ¬𝑥𝑦¬𝑧, 11 ↦
¬𝑥𝑦𝑧). Retracing steps through Proposition 3.23 and Proposition 3.21, one may compute from this
function 𝑓 a unifier for 𝜙, by sending each variable 𝑐 ∈ {𝑥, 𝑦, 𝑧} to a formula 𝜎𝑐 such that 𝜎𝑐 = 𝑓 −1(𝑐̂). To
compute such formulas 𝜎𝑐 , one may use the fact that each node of 𝐵𝑑 can be described by a conjunction
of literals; for example, 01 is the unique node in ̂𝑝∧¬X𝑝. In the example, this gives us the formulas
𝜎𝑥 = (¬𝑝∧¬X𝑝)∨(𝑝∧¬X𝑝), 𝜎𝑦 = (𝑝∧¬X𝑝)∨(¬𝑝∧X𝑝)∨(𝑝∧X𝑝), and 𝜎𝑧 = (𝑝∧¬X𝑝)∨(𝑝∧X𝑝). With

55

3 Temporal logic: Model companions and unification

some simple manipulations in deterministic modal algebra, one sees that this unifier is equivalent to
𝑥 ↦ ¬X𝑝, 𝑦 ↦ 𝑝 ∨ X𝑝 and 𝑧 ↦ 𝑝, as expected.
On the other hand, we can now also show that 𝜓 def= (𝑥 ⇔ ¬X𝑥) does not have a unifier. Indeed,

the graph with edges 𝐸𝜓 is depicted on the right in Fig. 3.4. This graph clearly does not admit a
homomorphism from any de Bruijn graph, for example because it does not have any loops.

Deciding the de Bruijn graph mapping problem. At the end of Example 3.27, we saw a simple
reason for answering ‘impossible’ in the de Bruijn graph mapping problem. In general, however, it is
not a priori clear when a graph does not admit a homomorphism from any de Bruijn graph 𝐵𝑑 .

We call a graph 𝐺 a target (of a de Bruijn graph) if there exists, for some 𝑑 ≥ 1, a homomorphism
𝐵𝑑 → 𝐺. Our goal is, then, to give a decidable characterization of the graphs that are targets. In [23,
Prop. 3.4], such a characterization was given in case the input graph 𝐺 is deterministic i.e., for every
𝑥 ∈ 𝑉𝐺 and 𝑎 ∈ Σ, there exists a unique 𝑦 ∈ 𝑉𝐺 such that 𝑥 𝑎→ 𝑦.10 It is proved there that, for any
𝑑 ≥ 1, a deterministic graph 𝐺 admits a surjective homomorphism from 𝐵𝑑 if, and only if, 𝐺 is strongly
connected and 𝑑-synchronizing. Here, a graph is strongly connected if there is a path between any two
nodes, and 𝑑-synchronizing if, for every 𝑤 ∈ Σ𝑑 , there exists a node 𝑦𝑤 such that, for every 𝑥 ∈ 𝑉𝐺,
there exists a path 𝑥 𝑤→ 𝑦𝑤 in 𝐺. It is also shown in [22, Sec. 8.2] that it can be checked whether or
not there exists 𝑑 such that a graph is 𝑑-synchronizing; in fact, checking whether this is the case for
𝑑 ≤ |𝑉𝐺| suffices, and the procedure outlined in [22, Sec 8.2] takes linear time in the size of the input
graph.
Note, however, that the homomorphic image of a deterministic graph, such as 𝐵𝑑 , may fail to be

deterministic. Moreover, one may show that essentially any Σ-labeled graph, not necessarily deter-
ministic, can occur as the graph associated with a unification problem for the logic 𝐗(𝑘), with |Σ| ≤ 2𝑘 .
We thus need to generalize the results of [22, 23] to the non-deterministic setting. We first establish
that the criteria from the deterministic case are no longer sufficient.

Example 3.28 (The ‘hamburger’ graph). Consider the graph in Fig. 3.5. This graph is strongly con-

𝑥 𝑧 𝑦0 1
0, 1 0, 1

0, 1 0, 1

1

0

Figure 3.5: A graph that is strongly connected, 2-synchronizing, but not a de Bruijn graph target.

nected and 2-synchronizing. However, it is not an image of 𝐵2. One may see this as follows: In 𝐵2, we
have 00 1→ 01 1→ 11; a homomorphism must map this to 𝑥 1→ 𝑧 1→ 𝑦. Similarly, 11 0→ 10 0→ 00 must
be sent to 𝑦 0→ 𝑧 0→ 𝑥 . But now the edge 10 1→ 01 is not preserved: 𝑧 ̸ 1→ 𝑧. In fact, as will follow from
Theorem 3.29, the hamburger graph does not admit a homomorphism from 𝐵𝑑 for any 𝑑.

We will now identify the property that all targets of de Bruijn graphs have, and that the hamburger
10Deterministic graphs are simply called ‘automata’ in [23], but we avoid this terminology here in order not to clash with

more general notions of automaton used earlier in this chapter.

56

3.2 De Bruijn graphs and unification for deterministic next

graph of Example 3.28 lacks. We will call this property power-connectedness, as it is a strong form of
connectedness for the power graph.
First, the strong form of connectedness is defined as follows. Let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be a graph. A node

𝑢 ∈ 𝑉𝐻 is a predecessor of a set 𝑆 ⊆ 𝑉𝐻 if, for every 𝑎 ∈ Σ, there exists 𝑠 ∈ 𝑆 such that 𝑢 𝑎→ 𝑠. A set
𝐶 ⊆ 𝑉𝐻 is closed if it contains all of its predecessors. Note that the closed subsets of a graph form a
family that is closed under intersections. Thus, we can define the closure of a set 𝑆 ⊆ 𝑉𝐻 to be the
smallest closed set containing 𝑆. Note that the closure of a set can be computed in at most |𝑉𝐻 | steps,
by a simple saturation algorithm, where each step takes polynomial time.
Now, for a graph 𝐺 = (𝑉𝐺, 𝐸𝐺), the power graph of 𝐺 is the graph ℙ(𝐺) = ((𝑉𝐺), 𝐸ℙ(𝐺)), where, for

any 𝑆, 𝑇 ⊆ 𝑉𝐺,

𝑆 𝑎→ℙ(𝐺) 𝑇
def⟺ for every 𝑥 ∈ 𝑆, there exists 𝑦 ∈ 𝑇 such that 𝑥 𝑎→𝐺 𝑦 .

We now say that 𝐺 is power-connected if, in the power graph ℙ(𝐺), the node 𝑉𝐺 is in the closure
of the set of singleton nodes {{𝑢} ∣ 𝑢 ∈ 𝑉𝐺}. For example, the hamburger graph of Example 3.28
fails to be power-connected: One may compute that the closure of the set of singleton nodes is
{{𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}}, which does not contain 𝑉𝐺 = {𝑥, 𝑦, 𝑧}. Computing the power graph of a graph
takes exponential time, so that checking whether a graph is power-connected takes exponential time
as well.
A second property that is necessary to be a target of a de Bruijn graph is to contain ‘a lot of cycles,

reachable from anywhere’. Indeed, observe that, in the de Bruijn graph 𝐵𝑑 itself, for any word 𝑤 ∈ Σ+,
if one reads the word 𝑤𝑑 starting from anywhere in the graph, then one will end up on a cycle labeled
by 𝑤. This property is transferred to the homomorphic image. The following definition formalizes
this idea.
Let 𝐺 = (𝑉𝐺, 𝐸𝐺) be a graph. For 𝑤 ∈ Σ+, we call a node 𝑢 a 𝑤-cycle basepoint if there exists a path

𝑢 𝑤→ 𝑢. We say that a 𝑤-cycle basepoint 𝑢 is reachable if there exists 𝓁 ≥ 1 such that, for every node
𝑣 ∈ 𝑉𝐺, there is a path 𝑣

𝑤𝓁

→ 𝑢. Finally, we say that 𝐺 is cycle-connected if, for every 𝑤 ∈ Σ+, there exists
a reachable 𝑤-cycle basepoint in 𝐺.
Neither of the properties of cycle-connectedness and power-connectedness implies the other: One

direction is given by the hamburger graph of Example 3.28, and Fig. 3.6 gives an example of a graph
(the ‘cone of fries’) that is power-connected but clearly not cycle-connected, as it does not contain
any 0-cycle.

𝑧 𝑦

𝑥

0

0, 10, 10

1

Figure 3.6: A power-connected graph that is not cycle-connected.

Our main result, which characterizes those graphs that admit a homomorphism from a de Bruijn
graph, is the following.

57

3 Temporal logic: Model companions and unification

Theorem 3.29. A graph 𝐺 has a cycle- and power-connected subgraph if, and only if, there exist 𝑑 ≥ 1
and a homomorphism 𝐵𝑑 → 𝐺.

We further claim that it can be checked in exponential time whether or not a given input graph has
a cycle- and power-connected subgraph. Thus, Theorem 3.29 in particular implies that the de Bruijn
graph mapping problem is decidable in exponential time. Combining this with the exponential-time
reduction that led up to Definition 3.26, we obtain the claimed doubly-exponential algorithm for the
unifiability problem for 𝐗 with a fixed number of constants.

Having formulated the conditions of cycle- and power-connectedness, it is reasonably straight-
forward to show that any surjective graph homomorphism must preserve them, so that any homo-
morphic image of a de Bruijn graph must be cycle- and power-connected. Thus, any target of a de
Bruijn graph contains a cycle- and power-connected subgraph, namely, the image of the homomor-
phism. The proof of the left-to-right direction of Theorem 3.29 is the most combinatorially involved
part of this work, and we only give a brief impression of its main ingredients here.
Given a cycle- and power-connected graph 𝐺, we need to define a homomorphism ℎ∶ 𝐵𝑑 → 𝐺, for

some 𝑑. Observe that, if we are able to define such ℎ, then, for any letter 𝑎 ∈ Σ, the node of the form 𝑎𝑑

must be sent to a node with 𝑎-loop under the homomorphism. An 𝑎-loop exists in 𝐺, by an application
of cycle-connectedness. By similarreasoning, for any word𝑤 ∈ Σ+, the node of 𝐵𝑑 that is reached from
anywhere by reading 𝑤𝑑 must be sent by ℎ to a 𝑤-cycle basepoint in 𝐺. However, there is no clear
canonical choice for such a basepoint, and a problem may arise if one chooses these basepoints too
arbitrarily: For instance, consider the nodes 𝑢1 = (01)𝑑/2 and 𝑢2 = (10)𝑑/2 of 𝐵𝑑 (where we assume
for convenience that 𝑑 is even). The basepoint chosen in 𝐺 as the image of 𝑢1 must have a 0-edge to
the basepoint chosen as the image of 𝑢2. A consistent such choice can indeed be made, using again
the cycle-connectedness property and choosing an ordering on the cyclic conjugacy class of a word.
The final, and arguably most difficult problem, in this part of the proof is where to send nodes of 𝐵𝑑
that are not powers of small words. We cannot assign them completely arbitrary, since such nodes
will have paths to nodes that are powers of small words, so they should not be mapped too far away
from the chosen cycle basepoints. To achieve this, we use the power-connectedness assumption,
from which we can deduce that, from any node in the graph, there are consistent choices of paths
which will allow us to ‘synchronize’, in a similar way to the deterministic case. To make the details
of this synchronization process work, we use a technique from the theory of string compression,
called minimizers [149, 155], combined with techniques from combinatorics on finite words, notably
the critical factorization theorem [115, Ch. 8]. Further details of the proof of Theorem 3.29 will be
provided in the forthcoming preprint [80], also see [166].

3.3 Outlook on temporal logic

The work on temporal logic, model-completeness, and decidability of unification problems that I dis-
cussed in this chapter suggests several directions for further research, which I will outline now.
The general fair tree logic described in Section 3.1 only considers trees up to bisimilarity, and its

model companion thus only encodes bisimulation-invariant monadic second-order logic, which ex-
plains the close connection to the 𝜇-calculus, in light of the equi-expressivity of the two logics [103].
In current ongoing work with L. Carai and S. Ghilardi, we aim to extend our result so as to view

58

3.3 Outlook on temporal logic

full monadic second-order logic on trees as a model companion. This will involve breaking the
bisimulation-invariance by extending our fair tree logic with counting temporal operators. We will
also have to reprove the completeness of the axiomatization of this version of fair tree logic with
counting, that is, the analogue of Theorem 3.13.
While the Kozen-Park axiomatization of the full 𝜇-calculus is known to be complete for the intended

transition system semantics [109, 177], no general method is known for proving, when is a definable
fragment of the 𝜇-calculus, the completeness of the Kozen-Park axioms restricted to the fragment  .
Such a completeness result is really what we needed in Theorem 3.13: If 𝑡 is a term of fair tree logic that
is valid on any tree, then the cited completeness results only imply that there is a syntactic derivation
of the equality 𝑡 = ⊤ in the full 𝜇-calculus. However, such a derivation might, a priori, always require
passing through other fixed point formulas, which are not available in fair tree logic signature itself.
Our Theorem 3.13 establishes that this cannot happen in the case of fair tree logic, but a general
method for establishing such a ‘conservativity’ result for sufficiently well-behaved fragments  is an
important open problem, which might benefit from a more general vantage point than the ad hoc
construction we developed in [70, Sec. 3] for proving completeness in the case of fair tree logic. A
line of work by Y. Venema and various co-authors suggests a similar direction, and uses algebra and
coalgebra for proving such generic completeness results for certain fragments of the 𝜇-calculus, see
e.g. [51, 153, 172].
In Section 3.2, we only looked at the most basic computational problem regarding unification,

namely, whether or not a unifier exists for a given instance. The unification literature also com-
monly considers questions of unification type [14, Def. 3.4], and the possibility of finding projective
unifiers [69]. These questions are open for the varieties 𝐗(𝑘), and one way to investigate them would
be to reduce them to graph problems, as well.
A notable, and somewhat notorious, open problem in the realm of unifiability is the question

whether the unifiability problem for non-deterministic modal logic 𝐊, with any number of param-
eters (including 0), is decidable. Our work in Section 3.2 emerged out of an attempt to study this
problem coalgebraically. In [81], we explained how to perform the first part of the reduction done for
deterministicmodal algebras in Section 3.2 in the more general setting of 𝐊. This gives a reformulation
of the unifiability problem for 𝐊 in terms of a computational problem about neighborhood frames or
hypergraphs. However, decidability of this problem is so far beyond our reach.
The reductions of unification problems to graph-like problems given in Section 3.2 rely, in the

background, on the fact that both 𝐗 and 𝐊 are varieties of algebras for a functor, which allows us to
make use of algebra-coalgebra duality. Unification is also of interest for other logics, such as 𝐒𝟒 [66]
and intuitionistic logic 𝐈 [68], whose associated varieties are not immediately algebras for a functor
in the usual sense. A further equational theory of interest is that of Boolean algebra in the signature
that only has the XOR operator and an endomorphism X for it. This unification problem has been
previously studied with different methods in the context of cryptographic protocols [113], and would
be interesting to revisit with our methods. Following [67], which was an inspiration for our work
in Section 3.2, I would like to investigate if any of these algebraic/coalgebraic methods may still be
applicable to unification problems in these logics.
Let me end by mentioning a curious and unexpected connection [11, p. 3, footnote 1] which touches

on all three themes discussed in this document, and also deserves further investigation. This fact con-
cerns a connection between the separation problem for first-order logic (Chapter 1), and interpolation

59

3 Temporal logic: Model companions and unification

(Chapter 2) for linear temporal logic (Chapter 3). It is known that linear temporal logic does not have
interpolants, in general. The interpolant existence problem for linear temporal logic asks, given two
linear temporal formulas 𝜙 and 𝜓 such that 𝜙 ⇒ 𝜓 is valid, whether or not there exists an interpolant
𝜃 for 𝜙 and 𝜓. The answer turns out to be positive if, and only if, certain regular languages associated
to 𝜙 and 𝜓 admit a first-order separator. The reason for this is, in short, that linear temporal logic
with added propositional quantifiers can define any regular language. Thus, the decidability of sepa-
ration for first-order definable languages (which we discussed in Section 1.2) implies the decidability
of this interpolant existence problem for linear temporal logic. The interpolant existence problem is
of course not limited to linear temporal logic, and it is thus tempting to investigate whether interpo-
lation existence problems for other modal and temporal logics could also be solved by automata- or
monoid-theoretic techniques. I leave this to future work.

60

Bibliography

[1] S. Abramsky and L. Reggio. “Arboreal categories and equi-resource homomorphism preservation the-
orems”. Annals of Pure and Applied Logic 175.6 (2024), p. 103423.

[2] G. D’Agostino and M. Hollenberg. “Logical questions concerning the µ-calculus: interpolation, Lyndon
and Łoś-Tarski”. J. Symbolic Logic 65.1 (2000), pp. 310–332.

[3] J. Almeida. Finite semigroups and universal algebra. Vol. 3. Series in Algebra. Translated from the 1992
Portuguese original and revised by the author. World Scientific Publishing Co. Inc., 1994. xviii+511.

[4] J. Almeida, J. C. Costa, andM. Zeitoun. “Iterated periodicity over finite aperiodic semigroups”. European
J. Combin. 37 (2014), pp. 115–149.

[5] J. Almeida, J. C. Costa, and M. Zeitoun. “McCammond’s normal forms for free aperiodic semigroups
revisited”. LMS J. Comput. Math. 18.1 (2015), pp. 130–147.

[6] J. Almeida. “Some algorithmic problems for pseudovarieties”. Publ. Math. Debrecen 54.1 (1999), pp. 531–
552.

[7] J. Almeida, A. Costa, J. C. Costa, and M. Zeitoun. “The linear nature of pseudowords”. Publicacions
matematiques 63.2 (2019), pp. 361–422.

[8] J. Almeida, A. Costa, R. Kyriakoglou, andD. Perrin. Profinite semigroups and symbolic dynamics. Springer,
2020.

[9] J. Almeida, J. C. Costa, and M. Zeitoun. “Pointlike sets with respect to R and J”. Journal of Pure and
Applied Algebra 212.3 (2008), pp. 486–499.

[10] J. Almeida, H. Goulet-Ouellet, and O. Klíma. “What makes a Stone topological algebra Profinite”. Alge-
bra universalis 84.1 (2023).

[11] A. Artale, J. C. Jung, A. Mazzullo, A. Ozaki, and F. Wolter. “Living without Beth and Craig: Explicit
definitions and interpolants in description logicswith nominals”. In: Proceedings of the 33rd International
Workshop on Description Logics (DL 2020). 2020.

[12] M. v. Atten. “The Development of Intuitionistic Logic”. In: The Stanford Encyclopedia of Philosophy. Ed.
by E. N. Zalta and U. Nodelman. Fall 2023. Metaphysics Research Lab, Stanford University, 2023. url:
https://plato.stanford.edu/entries/intuitionistic-logic-development/.

[13] F. Baader and S. Ghilardi. “Unification inmodal and description logics”. Logic Journal of IGPL 19.6 (2011),
pp. 705–730.

[14] F. Baader, W. Snyder, P. Narendran, M. Schmidt-Schauss, and K. Schulz. “Unification Theory”. In: Hand-
book of Automated Reasoning. Ed. by A. Robinson and A. Voronkov. Handbook of Automated Reasoning.
Amsterdam: North-Holland, 2001, pp. 445–533.

[15] J. d. Bakker and D. Scott. “A theory of programs : an outline of joint work : IBM seminar Vienna, August
1969”. In: J.W. de Bakker, 25 jaar semantiek. C, Jan. 1989, pp. 1–30.

[16] P. Balbiani, C. Gencer, M. Mojtahedi, M. Rostamigiv, and T. Tinchev. “A gentle introduction to unifica-
tion in modal logics”. In: 13èmes Journées d’Intelligence Artificielle Fondamentale (JIAF 2019). 2019.

[17] P. Balbiani, C. Gencer, M. Rostamigiv, and T. Tinchev. “Remarks about the unification types of some
locally tabular normal modal logics”. Logic Journal of the IGPL 31.1 (2022), pp. 115–139.

[18] P. Balbiani and Q. Gougeon. “Projective unification through duality”. In:Advances in Modal Logic, AiML
2022, Rennes, France, August 22-25, 2022. Ed. by D. Fernández-Duque, A. Palmigiano, and S. Pinchinat.
College Publications, 2022, pp. 119–134.

[19] M. Barr. “Terminal coalgebras in well-founded set theory”. Theoretical Computer Science 114.2 (1993),
pp. 299–315.

61

https://plato.stanford.edu/entries/intuitionistic-logic-development/

Bibliography

[20] F. Bellissima. “Finitely generated free Heyting algebras”. Journal of Symbolic Logic 51.1 (1986), pp. 152–
165.

[21] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Vol. 53. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 2001.

[22] C. Bleak, P. Cameron, Y. Maissel, A. Navas, and F. Olukoya. The Further Chameleon Groups of Richard
Thompson and Graham Higman: Automorphisms via Dynamics for the Higman–Thompson Groups 𝐺𝑛,𝑟 .
Preprint. 2016. url: https://arxiv.org/abs/1605.09302.

[23] C. Bleak, P. J. Cameron, and F. Olukoya. “Automorphisms of shift spaces and the Higman–Thompson
groups: the one-sided case”. Discrete Analysis (2021).

[24] S. L. Bloom and Z. Ésik. “The equational theory of regular words”. Information and Computation 197
(2005), pp. 55–89.

[25] M. Bojańczyk. Recognisable languages over monads. Preprint. 2015. url: http://arxiv.org/abs/1502.04898.
[26] N. G. de Bruijn. “A combinatorial problem”. Proceedings of the Koninklijke Nederlandse Akademie van

Wetenschappen 49.7 (1946), pp. 758–764.
[27] J. R. Büchi. “Weak second-order arithmetic and finite automata”. Zeitschr. f. math. Logik und Grundlagen

d. Math. 6 (1960), pp. 66–92.
[28] J. R. Büchi. “On a decision method in restricted second-order arithmetic”. In: Proceedings 1960 Inter-

national Congress for Logic, Methodology and Philosophy of Science. Ed. by E. Nagel, P. Suppes, and A.
Tarski. Stanford University Press, 1962, pp. 1–11.

[29] S. Burris and H. P. Sankappanavar. A Course in Universal Algebra. Update of the original 1981 Springer
edition. Springer, 2012.

[30] L. Cabrer and G. Metcalfe. “Admissibility via natural dualities”. Journal of Pure and Applied Algebra
219.9 (2015), pp. 4229–4253.

[31] A. Chagrov andM. Zakharyaschev.Modal Logic. Vol. 35. Oxford Logic Guides. Clarendon Press, Oxford,
1997.

[32] C. C. Chang and H. J. Keisler. Model theory, 3rd edition. North Holland, 1990.
[33] C. C. Chang. “A new proof of the completeness of the Lukasiewicz axioms”. Transactions of the American

Mathematical Society 93.1 (1959), pp. 74–80.
[34] C. C. Chang. “Algebraic analysis of many valued logics”. Transactions of the American Mathematical

society 88.2 (1958), pp. 467–490.
[35] C. C. Chang and H. J. Keisler. Continuous Model Theory. Princeton University Press, 1966.
[36] R. L. Cignoli, I. M. d’Ottaviano, and D. Mundici. Algebraic foundations of many-valued reasoning. Vol. 7.

Springer Science & Business Media, 2000.
[37] T. Colcombet, S. v. Gool, and R. Morvan. “First-order separation over countable ordinals”. In: Founda-

tions of software science and computation structures (FoSSaCS). Ed. by P. Bouyer and L. Schröder. 2022.
[38] P. Corbineau. “First-Order Reasoning in the Calculus of Inductive Constructions”. In: TYPES Conference.

Ed. by S. Berardi, M. Coppo, and F. Damiani. Vol. 3085. Lecture Notes in Computer Science. Springer,
2003, pp. 162–177.

[39] W. Craig. “Linear reasoning. A new form of the Herbrand-Gentzen theorem”. Journal of Symbolic Logic
22.3 (1957), pp. 250–268.

[40] H. B. Curry. “Functionality in Combinatory Logic”. Proc. Natl. Acad. Sci. U. S. A. 20 (Nov. 1934), pp. 584–
590.

[41] Y. Dandan and V. Gould. “Coherency for monoids and purity for their acts”. Advances in Mathematics
429 (2023), p. 109182.

[42] L. Darnière. De la triangulation p-adique à la théorie des modèles des algèbres de Heyting, et vice-versa.
Habilitation à diriger des recherches. 2019. url: https : / /math .univ - angers . fr / ~darniere /pub/hdr /
darniere-hdr.pdf.

[43] L. Darnière and M. Junker. “Model completion of varieties of co-Heyting algebras”. Houston J. Math.
44.1 (2018), pp. 49–82.

62

https://arxiv.org/abs/1605.09302
http://arxiv.org/abs/1502.04898
https://math.univ-angers.fr/~darniere/pub/hdr/darniere-hdr.pdf
https://math.univ-angers.fr/~darniere/pub/hdr/darniere-hdr.pdf

Bibliography

[44] M. Dickmann, N. Schwartz, and M. Tressl. Spectral Spaces. New Mathematical Monographs. Cambridge
University Press, 2019.

[45] C. DiSimone (translator). “The Sūtra on Impermanence (2) (Anityatāsūtra, mi rtag pa nyid kyi mdo, Toh
310)”. In: 84000: Translating theWords of the Buddha. 84000, 2024. url: https://read.84000.co/translation/
toh310.html.

[46] R. Dyckhoff. “Contraction-free sequent calculi for intuitionistic logic”. Journal of Symbolic Logic 57.3
(1992), pp. 795–807.

[47] R. Dyckhoff and S. Negri. “Admissibility of Structural Rules for Contraction-Free Systems of Intuition-
istic Logic”. The Journal of Symbolic Logic 65.4 (2000).

[48] S. Eilenberg. Automata, languages, and machines. Vol. B. With two chapters (“Depth decomposition the-
orem” and “Complexity of semigroups and morphisms”) by Bret Tilson, Pure and Applied Mathematics,
Vol. 59. New York: Academic Press, 1976, pp. xiii+387.

[49] C. C. Elgot. “Decision Problems of Finite Automata Design and Related Arithmetics”. Trans. Amer. Math.
Soc. 98.1 (1961), pp. 21–51.

[50] E. A. Emerson and J. Y. Halpern. ““Sometimes” and “not never” revisited: on branching versus linear
time (preliminary report)”. In: ACM-SIGACT Symposium on Principles of Programming Languages. 1983.

[51] S. Enqvist, F. Seifan, and Y. Venema. “Completeness for 𝜇-calculi: a coalgebraic approach”. Annals of
Pure and Applied Logic 170.5 (2019), pp. 578–641.

[52] L. Esakia. Heyting algebras: Duality theory. Vol. 50. Trends in Logic. 2019 translation of the original.
Springer, 1985.

[53] L. Esakia. “Topological Kripke models”. Soviet Math. Dokl. 15 (1974), pp. 147–151.
[54] S. Feferman. “Harmonious logic: Craig’s interpolation theorem and its descendants”. Synthese 164.3

(2008), pp. 341–357.
[55] H. Férée, I. v. d. Giessen, S. v. Gool, and I. Shillito. “Mechanised uniform interpolation for K, GL, and

iSL”. In: Automated Reasoning: 12th International Joint Conference, IJCAR 2024, Nancy, France, July 3–6,
2024, Proceedings, Part I. Ed. by C. Benzmüller, M. J. Heule, and R. A. Schmidt. 2024.

[56] H. Férée and S. v. Gool. “Formalizing and computing propositional quantifiers”. Certified proofs and
programs (CPP) (2023).

[57] M. Fraser, A. Granville, M. H. Harris, C. McLarty, E. Riehl, and A. Venkatesh. “Will machines change
mathematics?” Bulletin of the American Mathematical Society 61.2 (2024). Introduction to a special issue
on mathematics and artificial intelligence.

[58] W. Fussner, M. Gehrke, S. v. Gool, and V. Marra. “Priestley duality for MV algebras and beyond”. Forum
Mathematicum 33 (4 2021).

[59] M. Gehrke and S. v. Gool. “Distributive envelopes and topological duality for lattices via canonical
extensions”. Order 31 (3 2013), pp. 435–461.

[60] M. Gehrke and S. v. Gool. Topological Duality for Distributive Lattices: Theory and Applications. Cam-
bridge University Press, 2024, pp. 352+xvi.

[61] M. Gehrke, S. v. Gool, and V. Marra. “Sheaf representations of MV-algebras and lattice-ordered abelian
groups via duality”. Journal of Algebra 417 (2014), pp. 290–332.

[62] M. Gehrke, S. Grigorieff, and J. Pin. “Duality and Equational Theory of Regular Languages”. In: Au-
tomata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland,
July 7-11, 2008, Proceedings, Part II. Ed. by L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A.
Ingólfsdóttir, and I.Walukiewicz. Vol. 5126. Lecture Notes in Computer Science. Springer, 2008, pp. 246–
257.

[63] M. Gehrke and J. Harding. “Bounded Lattice Expansions”. Journal of Algebra 238.1 (2001), pp. 345–371.
[64] M. Gehrke and B. Jónsson. “Bounded distributive lattices with operators”. Mathematica Japonica 40.2

(1994), pp. 207–215.
[65] S. Ghilardi. “An algebraic theory of normal forms”.Annals of Pure and Applied Logic 71.3 (1995), pp. 189–

245.
[66] S. Ghilardi. “Best solving modal equations”. Annals of Pure and Applied Logic 102.3 (2000), pp. 183–198.

63

https://read.84000.co/translation/toh310.html
https://read.84000.co/translation/toh310.html

Bibliography

[67] S. Ghilardi. Handling Substitutions via Duality. Slides. 2018. url: https://easychair.org/smart- slide/
slide/Bn7h.

[68] S. Ghilardi. “Unification in intuitionistic logic”. The Journal of Symbolic Logic 64.2 (1999), pp. 859–880.
[69] S. Ghilardi. “Unification through projectivity”. Journal of Logic and Computation 7.6 (1997), pp. 733–752.
[70] S. Ghilardi and S. J. v. Gool. “Monadic second order logic as the model companion of temporal logic”.

In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New
York, NY, USA, July 5-8, 2016. Ed. by M. Grohe, E. Koskinen, and N. Shankar. ACM, 2016, pp. 417–426.

[71] S. Ghilardi and S. v. Gool. “Amodel-theoretic characterization of monadic second-order logic on infinite
words”. Journal of Symbolic Logic 82 (1 2017), pp. 62–76.

[72] S. Ghilardi and M. Zawadowski. “Model completions and r-Heyting categories”. Annals of Pure and
Applied Logic 88.1 (1997), pp. 27–46.

[73] S. Ghilardi and M. Zawadowski. Sheaves, Games, and Model Completions. Springer, 2002.
[74] I. van der Giessen. Uniform Interpolation and Admissible Rules. Vol. 138. Quaestiones Infinitae. PhD

thesis, Utrecht University. 2022.
[75] I. van der Giessen and R. Iemhoff. “Proof theory for intuitionistic strong Löb logic”. English.Accepted for

publication in Special Volume of theWorkshop Proofs! held in Paris in 2017 (2020). Preprint arXiv:2011.10383v2.
[76] R. Goldblatt. Logics of time and computation. 2nd. CSLI Lecture Notes 7. Stanford University, 1992.
[77] S. van Gool, P.-A. Melliès, and V. Moreau. “Profinite lambda-terms and parametricity”. Electronic Notes

in Theoretical Informatics and Computer Science Volume 3 - Proceedings of MFPS XXXIX (2023).
[78] S. v. Gool. “Duality and canonical extensions for stably compact spaces”. Topology and its Applications

159 (1 2012), pp. 341–359.
[79] S. v. Gool and J. Marquès. “On duality and model theory for polyadic spaces”.Annals of Pure and Applied

Logic 175 (2024).
[80] S. v. Gool, J. Marti, and M. Sweering. A decidable characterization of images of de Bruijn graphs. Unpub-

lished draft. 2024.
[81] S. v. Gool and J. Marti. “Modal unification step by step”. 37th international workshop on Unification

(UNIF) (2023).
[82] S. v. Gool, G. Metcalfe, and C. Tsinakis. “Uniform Interpolation and Compact Congruences”. Annals of

Pure and Applied Logic 168 (2017), pp. 1927–1948.
[83] S. v. Gool and L. Reggio. “An open mapping theorem for finitely copresented Esakia spaces”. Topology

and its Applications 240 (2018), pp. 69–77.
[84] S. v. Gool and B. Steinberg. “Pointlike sets for varieties determined by groups”. Adv. Math. 348 (2019),

pp. 18–50.
[85] S. v. Gool and B. Steinberg. “Merge decompositions, two-sided Krohn-Rhodes, and aperiodic pointlikes”.

Canadian Mathematical Bulletin 62 (1 2019), pp. 199–208.
[86] S. v. Gool and B. Steinberg. “Pro-aperiodic monoids via saturated models”. Symposium on theoretical

aspects of computer science (STACS) 66 (2017), 39:1–39:14.
[87] S. v. Gool and B. Steinberg. “Pro-aperiodic monoids via saturated models”. Israel Journal of Mathematics

234 (2019), pp. 451–498.
[88] S. v. Gool and B. Steinberg. Proaperiodic monoids via prime models. Draft. 2019. url: https : / /www.

samvangool.net/assets/pdf/GS2019primemodels-note.pdf.
[89] J. Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory. Cambridge University Press, 2013.
[90] V. Gould. “Coherent monoids”. J. Australian Math. Soc. 53 (1992), pp. 166–182.
[91] E. Grädel, W. Thomas, and T. Wilke, eds. Automata Logics, and Infinite Games: A Guide to Current

Research. Vol. 2500. Lecture Notes in Computer Science. Springer, 2002.
[92] B. Hart. “An introduction to continuous model theory”. In: Model Theory of Operator Algebras. Ed. by

I. Goldbring. Berlin, Boston: De Gruyter, 2023, pp. 83–132.
[93] K. Henckell. “Pointlike sets: the finest aperiodic cover of a finite semigroup”. J. Pure Appl. Algebra 55

(1988), pp. 85–126.

64

https://easychair.org/smart-slide/slide/Bn7h
https://easychair.org/smart-slide/slide/Bn7h
https://www.samvangool.net/assets/pdf/GS2019primemodels-note.pdf
https://www.samvangool.net/assets/pdf/GS2019primemodels-note.pdf

Bibliography

[94] K. Henckell and S. Herman. “A General Theory of Pointlike Sets”. Preprint. 2021. url: https://arxiv.
org/abs/2108.12824.

[95] K. Henckell, J. Rhodes, and B. Steinberg. “Aperiodic pointlikes and beyond”. International Journal of
Algebra and Computation 20.02 (2010), pp. 287–305.

[96] V. Henriksson and M. Kufleitner. “Conelikes and Ranker Comparisons”. In: LATIN 2022: Theoretical
Informatics: 15th Latin American Symposium, Guanajuato, Mexico, November 7–11, 2022, Proceedings.
Guanajuato, Mexico: Springer-Verlag, 2022, pp. 359–375.

[97] W. Hodges. Model theory. Vol. 42. Encyclopedia of mathematics and its applications. Cambridge Uni-
versity Press, 1993.

[98] W. A. Howard. “The formulae-as-types notion of construction”. In: ToH.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism. Ed. by J. P. Seldin and J. R. Hindley. (Original paper manuscript
from 1969). 1980, pp. 479–490.

[99] J. Hudelmaier. A Prolog program for intuitionistic logic. Tech. rep. SNS-Bericht 88-28. University of
Tübingen, 1988.

[100] M. Huschenbett and M. Kufleitner. “Ehrenfeucht-Fraisse Games on Omega-Terms”. In: STACS. 2014,
pp. 374–385.

[101] R. Iemhoff. “Uniform interpolation and sequent calculi in modal logic”. Arch. Math. Logic 58.1-2 (2019),
pp. 155–181.

[102] T. Jakl, D. Marsden, and N. Shah.A categorical account of composition methods in logic (extended version).
Preprint. 2024. url: https://arxiv.org/pdf/2405.06664.

[103] D. Janin and I. Walukiewicz. “On the expressive completeness of the propositional mu-calculus with
respect to monadic second order logic”. In: CONCUR ’96: Concurrency Theory. Vol. 1119. Lecture Notes
in Computer Science. Springer, 1996, pp. 263–277.

[104] E. Jeřábek. “Blending margins: the modal logic K has nullary unification type”. Journal of Logic and
Computation 25.5 (2013), pp. 1231–1240.

[105] B. Jónsson and A. Tarski. “Boolean algebras with operators. I”. American Journal of Mathematics 73.4
(1951), pp. 891–939.

[106] S. C. Kleene. “Representation of events in nerve nets and finite automata”. In: Automata studies. Annals
of mathematics studies 34. Princeton, N. J.: Princeton University Press, 1956, pp. 3–41.

[107] S. Koppelberg, J. Monk, and R. Bonnet. Handbook of Boolean Algebras. Vol. 1. North-Holland, 1989.
[108] T. Kowalski and G. Metcalfe. “Uniform interpolation and coherence”. Annals of Pure and Applied Logic

170.7 (2019), pp. 825–841.
[109] D. Kozen. “Results on the propositional 𝜇-calculus”. Theor. Comput. Sci. 27 (1983), pp. 333–354.
[110] K. Krohn and J. Rhodes. “Algebraic theory of machines. I. Prime decomposition theorem for finite semi-

groups and machines”. Trans. Amer. Math. Soc. 116 (1965), pp. 450–464.
[111] D. Linkhorn. “Monadic Second Order Logic and Linear Orders”. PhD thesis. The University of Manch-

ester, 2021. url: https://research.manchester.ac.uk/files/208484417/FULL_TEXT.PDF.
[112] D. Linkhorn. The pseudofinite monadic second order theory of words. 2022. url: https://arxiv.org/abs/

2202.07774.
[113] Z. Liu and C. Lynch. “Efficient General Unification for XOR with Homomorphism”. In: Automated De-

duction – CADE-23. Ed. by N. Bjørner and V. Sofronie-Stokkermans. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 407–421.

[114] M. Lohrey and C. Mathissen. “Isomorphism of regular trees and words”. Inform. and Comput. 224 (2013),
pp. 71–105.

[115] M. Lothaire. Combinatorics on Words. Cambridge, United Kingdom: Cambridge University Press, 1997.
[116] J. Łukasiewicz. “O logice trojwartosciowej”. Ruch Filozoficny 5 (1920), pp. 170–171.
[117] L. Maksimova. “Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-

boolean algebras”. Algebra and Logic 16.6 (1977), pp. 427–455.
[118] S. Margolis, J. Rhodes, and A. Schilling. “Decidability of Krohn–Rhodes complexity for all finite semi-

groups and automata”. Preprint. 2024. url: https://arxiv.org/pdf/2406.18477.

65

https://arxiv.org/abs/2108.12824
https://arxiv.org/abs/2108.12824
https://arxiv.org/pdf/2405.06664
https://research.manchester.ac.uk/files/208484417/FULL_TEXT.PDF
https://arxiv.org/abs/2202.07774
https://arxiv.org/abs/2202.07774
https://arxiv.org/pdf/2406.18477

Bibliography

[119] S. Margolis, J. Rhodes, and A. Schilling. “Decidability of Krohn-Rhodes complexity 𝑐 = 1 of finite semi-
groups and automata”. Preprint. 2023. url: https://arxiv.org/abs/2110.10373.

[120] J. Marquès. “Categorical logic from the perspective of duality and compact ordered spaces”. PhD thesis.
Nice: Université Côte d’Azur, 2023. url: https://jeremie-marques.name/thesis.pdf.

[121] J. Marquès. “Polyadic Spaces and Profinite Monoids”. In: Relational and Algebraic Methods in Computer
Science. Ed. by U. Fahrenberg, M. Gehrke, L. Santocanale, and M. Winter. Cham: Springer International
Publishing, 2021, pp. 292–308.

[122] U. Martin and T. Nipkow. “Boolean Unification — The Story So Far”. Journal of Symbolic Computation
7 (1989). Reprinted in C. Kirchner, Unification, Academic Press (1990), 437–455, pp. 275–293.

[123] Mathlib Community. “The Lean mathematical library”. In: Proceedings of the 9th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs. ACM, 2020.

[124] J. P. McCammond. “Normal forms for free aperiodic semigroups”. Int. J. Algebra Comput. 11.5 (2001),
pp. 581–625.

[125] J. P. McCammond. “The solution to the word problem for the relatively free semigroups satisfying
𝑇 𝑎 = 𝑇 𝑎+𝑏 with 𝑎 ≥ 6”. Internat. J. Algebra Comput. 1.1 (1991), pp. 1–32.

[126] R. McNaughton. Symbolic Logic and Automata. Tech. rep. Wright-Paterson Air Force Base, 1960.
[127] R. McNaughton and S. Papert. Counter-Free Automata. Cambridge, Mass.: The MIT Press, 1971.
[128] G. Metcalfe and L. Reggio. “Model Completions for Universal Classes of Algebras: Necessary and Suf-

ficient Conditions”. The Journal of Symbolic Logic 88.1 (2023), pp. 381–417.
[129] L. S. Moss. “Finite models constructed from canonical formulas”. Journal of Philosophical Logic 36 (2007),

pp. 605–640.
[130] A. W. Mostowski. “Regular expressions for infinite trees and a standard form of automata”. In: Compu-

tation Theory. Ed. by A. Skowron. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 157–168.
[131] D. Mundici. Advanced Łukasiewicz calculus and MV-algebras. Vol. 35. Springer Science & Business Me-

dia, 2011.
[132] L. Nachbin. Topology and order. van Nostrand, 1964, p. 122.
[133] R. Nederpelt and H. Geuvers. Type Theory and Formal Proof: An Introduction. Cambridge University

Press, 2014.
[134] D. Pattinson. “Coalgebraicmodal logic: soundness, completeness and decidability of local consequence”.

Theoretical Computer Science 309.1 (2003), pp. 177–193.
[135] D. Perrin. “Les débuts de la théorie des automates”. Séminaire de Philosophie et Mathématiques 1 (1993),

pp. 1–17.
[136] J.-É. Pin and P. Weil. “Profinite semigroups, Mal’cev products, and identities”. Journal of Algebra 182.3

(1996), pp. 604–626.
[137] J.-É. Pin, ed. Handbook of automata theory. Vol. 1 and 2. EMS Press, 2021.
[138] J.-É. Pin. “Syntactic semigroups”. In: Handbook of language theory. Ed. by G. Rozenberg and S. A. Vol. 1.

Springer Verlag, 1997, pp. 679–746.
[139] A. M. Pitts. “On an interpretation of second-order quantification in first-order intuitionistic proposi-

tional logic”. J. Symbolic Logic 57.1 (1992), pp. 33–52.
[140] T. Place and M. Zeitoun. “Dot-depth three, return of the J-class”. In: Proceedings of the 39th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS’24. 2024, pp. 1–15.
[141] T. Place andM. Zeitoun. “Separating regular languageswith first-order logic”. In: Proceedings of the Joint

Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Vienna, Austria: Association
for Computing Machinery, 2014.

[142] T. Place and M. Zeitoun. “The Covering Problem”. Log. Methods Comput. Sci. 14.3 (2018).
[143] H. A. Priestley. “Representation of distributive lattices by means of ordered Stone spaces”. Bull. London

Math. Soc. 2 (1970), pp. 186–190.

66

https://arxiv.org/abs/2110.10373
https://jeremie-marques.name/thesis.pdf

Bibliography

[144] M. Rabin and D. Scott. “Finite automata and their decision problems”. IBM J. Res. and Develop. 3 (1959),
pp. 114–125.

[145] M. O. Rabin. “Decidability of second-order theories and automata on infinite trees.” Transactions of the
american Mathematical Society 141 (1969), pp. 1–35.

[146] L. Reggio and C. Riba. Finitely accessible arboreal adjunctions and Hintikka formulae. Preprint. 2023. url:
https://arxiv.org/abs/2304.12709.

[147] J. Reiterman. “The Birkhoff theorem for finite algebras”. Algebra Universalis 14 (1982), pp. 1–10.
[148] J. Rhodes and B. Steinberg. The q-theory of Finite Semigroups. Springer, 2009.
[149] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke. “Reducing storage requirements for

biological sequence comparison”. Bioinformatics 20.18 (July 2004), pp. 3363–3369.
[150] A. Robinson. Introduction to model theory and to the metamathematics of algebra. Studies in logic and

the foundations of mathematics. North-Holland, 1963.
[151] A. Robinson. On the Metamathematics of Algebra. North-Holland, 1951.
[152] C. F.-M. Sainte-Marie. “Question 48”. L’intermédiaire des Mathématiciens 1 (1894), pp. 107–110.
[153] L. Santocanale and Y. Venema. “Completeness for flat modal fixpoint logics”. Annals of Pure and Applied

Logic 162.1 (2010), pp. 55–82.
[154] A. Saurin. Interpolation as Cut-introduction. Draft. 2024. url: https://www.irif.fr/_media/users/saurin/

pub/interpolation_as_cut_introduction.pdf.
[155] S. Schleimer, D. S. Wilkerson, and A. Aiken. “Winnowing: local algorithms for document fingerprint-

ing”. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. SIG-
MOD ’03. San Diego, California: Association for Computing Machinery, 2003, pp. 76–85.

[156] M. P. Schützenberger. “On Finite Monoids Having Only Trivial Subgroups”. Information and Control 8.2
(1965), pp. 190–194.

[157] M. P. Schützenberger. “Une théorie algébrique du codage”. Séminaire Dubreil. Algèbre et théorie des
nombres 9 (1956), pp. 1–24.

[158] S. Shelah. “The monadic theory of order”. Ann. of Math. 102 (1975), pp. 379–419.
[159] I. Shillito, I. van der Giessen, R. Goré, and R. Iemhoff. “A New Calculus for Intuitionistic Strong Löb

Logic: Strong Termination and Cut-Elimination, Formalised”. In: Automated Reasoning with Analytic
Tableaux and Related Methods. Ed. by R. Ramanayake and J. Urban. Cham: Springer Nature Switzerland,
2023, pp. 73–93.

[160] T. P. Speed. “Profinite posets”. Bulletin of the Australian Mathematical Society 6.2 (1972), pp. 177–183.
[161] B. Steinberg. “On Pointlike Sets and Joins of Pseudovarieties”. International Journal of Algebra and

Computation 08.02 (1998), pp. 203–231.
[162] B. Steinberg. “Pointlike Sets and Separation: A Personal Perspective”. In: Developments in Language

Theory - 25th International Conference, DLT 2021, Porto, Portugal, August 16-20, 2021, Proceedings. Ed. by
N. Moreira and R. Reis. Vol. 12811. Lecture Notes in Computer Science. Springer, 2021, pp. 27–40.

[163] M. H. Stone. “Topological representations of distributive lattices and Brouwerian logics”. Čas. Mat. Fys.
67 (1938), pp. 1–25.

[164] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser, 1994.
[165] H. Straubing. “First-order logic and aperiodic languages: a revisionist history”. ACM SIGLOG News 5.3

(2018), pp. 4–20.
[166] M. Sweering. Deciding homomorphic images of De Bruijn graphs. Answer to a MathOverflow question

of S. v. Gool and J. Marti. 2023. url: https://mathoverflow.net/q/452566.
[167] G. Takeuti. Proof Theory (Second edition). North-Holland, 1987.
[168] The Coq Development Team. The Coq Reference Manual – Release 8.19.0. 2024.
[169] W. Thomas. “Languages, Automata, and Logic”. In: Handbook of Formal Languages. Springer, 1996,

pp. 389–455.
[170] W. Thomas. “Ehrenfeucht, Vaught, and the Decidability of the Weak Monadic Theory of Successor”.

ACM SIGLOG News 5.1 (2018), pp. 13–18.

67

https://arxiv.org/abs/2304.12709
https://www.irif.fr/_media/users/saurin/pub/interpolation_as_cut_introduction.pdf
https://www.irif.fr/_media/users/saurin/pub/interpolation_as_cut_introduction.pdf
https://mathoverflow.net/q/452566

Bibliography

[171] B. A. Trakhtenbrot. “Synthesis of logical nets whose operators are given by one-place predicate calculus
(in Russian)”. Doklady Akademia Nauk SSR 118.4 (1958).

[172] Y. Venema. Lectures on the modal 𝜇-calculus. Lecture notes. url: https://staff.science.uva.nl/y.venema/
teaching/ml/notes/20231215-mu.pdf.

[173] A. Visser. “Uniform interpolation and layered bisimulation”. In: Gödel ’96 proceedings. Ed. by P. Hájek.
Vol. 6. Lecture Notes in Logic. Springer-Verlag, 1996, pp. 139–164.

[174] A. Visser. “Aspects of Diagonalization & Provability”. PhD thesis. Utrecht University, 1981.
[175] A. Visser and T. Litak. Lewis and Brouwer meet Strong Löb. Preprint arXiv:2404.11969. 2024.
[176] N. N. Vorobev. “A new algorithm for derivability in the constructive propositional calculus”. American

Mathematical Society Translations. 2nd ser. 94 (1970). Translated from the 1952 Russian original, pp. 37–
71.

[177] I. Walukiewicz. “Completeness of Kozen’s axiomatisation of the propositional 𝜇-calculus”. Information
and Computation 157.1-2 (2000), pp. 142–182.

[178] W. H.Wheeler. “Model-companions and definability in existentially complete structures”. Israel Journal
of Mathematics 25 (1976), pp. 305–330.

[179] F. Wolter and M. Zakharyaschev. “Undecidability of the Unification and Admissibility Problems for
Modal and Description Logics”. ACM Trans. Comput. Logic 9.4 (2008).

[180] J. Worrell. “Terminal Sequences for Accessible Endofunctors”. Electronic Notes in Theoretical Computer
Science 19 (1999), pp. 24–38.

68

https://staff.science.uva.nl/y.venema/teaching/ml/notes/20231215-mu.pdf
https://staff.science.uva.nl/y.venema/teaching/ml/notes/20231215-mu.pdf

	Introduction
	Acknowledgments
	Monoids: Profiniteness, models and pointlikes
	Proaperiodic monoids and saturated models
	Covering, separation and pointlike sets
	Outlook on profinite monoids and pointlike sets

	Uniform interpolation: Topology, proof theory, and compact congruences
	An open mapping theorem for Esakia spaces
	Verified computation of uniform interpolants
	Compact congruences and model-completeness
	Outlook on uniform interpolation

	Temporal logic: Model companions and unification
	Model-complete extensions of temporal theories
	De Bruijn graphs and unification for deterministic next
	Outlook on temporal logic

	Bibliography

