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1. Wends, languagesautomata

The basic building blocks.

The rest of the slides are written in English ,
because this way , your

lecturer will write less (fewer ?! ) grammar mistakes.
We will speak French in class

. If any of this causes (informal) language issues
,
don't hesitate to tell me.

I hope you'll come to appreciate the mix as a feature
,
not a bug !



Let I be a finite set
,
which we call the alphabet .

A word is a finite sequence of symbols from 2. The set of words is denoted [*

Example .

-I = 50
, 1) .

Words are binary sequences ,
e

.g., 1001
,
01001

,
000.

Ü - I = Ya , b ,
ab3· The expression abab does not define a word in this alphabet.

ㅇ

We would need to write (a
,
b
,
ab) or lab

,
ab) or lab

,
a
,
b).

= We usually avoid taking such sets as alphabets ,
and assume unique parsability without commas.

We usually write a for the empty word ,
i.e .,

the unique sequence of length 0 .

It := [* [s].

Given words u ,
oaZ*, we can form their concatenation

,
now .

We often omit the

We write (ul for the length of : defined inductively : Isl := 0
,
lual := (n)+ 1 for all ne*, acE.

East. The structure (Z*, 0

,
3) is a monoid

,
which is free over

E

.

This means : for all w ,o ,
we Ʃt , lu -w ) wa u . Cu . w)

,
nE = u = E - u

.
(monoid )

and any function
[ - M

,
with M a monoid ,

has a unique homomorphic extension [
*
->M (free).



letwEE

A prefix of u is a word of I
*

such that

there exists reE
*

such that w = nw.

A suffix ofm is a word ve &
*
such that

there exists u
*

such that w = no .

A factor of u is a word fe
*
such that

there exist n
,
ve* such that w = ufo .

A subword of u is a word s = (s + ,
. . .

,
Sw)E

*

(n > o) such that

there exist No , M .
. . .,
Un

*
such that w = losiUn .... Sulu.



http://www.math.uni-hamburg.de/home/grothkopf/fotos/math-ges/

A language over the alphabet E is a subset of*

Formallanguage theory is the study of the set PlI
*) of languages .

Fact . There are uncountably many languages (if I # 0 ,
which we will always assume) .

_

(Exercise
.
) - By this I mean : "If

you
don't know how to prove it , please try ,

or look it up

online
,
or in a book

,
or ask a friend , or ask me

,
or ...

"

I do NOT mean : "This is easy and you should feel bad if you find it difficult .

"

& We just don't have time to discuss everything .)

G. Cautor (1845-1918)

=> We need methods of describing some of these languages ,
at least .

Automata and regular expressions are such methods.

photo credit ? They are fundamental to syntactic analysis , logic , verification ,
and more.



An automator over [ is a directed multigraph with I-labeled edges and two distinguished subsets.

Explicitly ,
an automaton is a quintuple A : /C

,
I

,
S

,
I

,
F)

,
where

· Q is a set ,
whose elements are called states ;

· I is an alphabet ;

· S[QXZxQ
,
its elements are called transitions or edges ;

· ICQ a set of initial states ;
· FCG a set of final states .

We often denote an edge (q .
a
,
r) as qr .

Its source is q ,
its target is r,

its label is a

We usually assume (without saying sol that Q is finite .

Acronym : NFA ("AFN" en français (



An automaton A = (Q
,
E

,
S

,
I

,
F) accepts a word we

*

if there exists a path

from an initial state to a final state that is labeled by w .
Otherwise

,
A rejects w.

Explicitly ,
A accepts w provided that there exists a sequence - Q

*

with ltkluwlth

such that :

- No E I ,

} it is a successful run on w
-

Tiw !
ε F

,

- for each Oi <w
, itit , in G

The language recognized by A is 2(A) := Swe [
*

/ A accepts wh
A language (2[

*
is recognizable if there exists an NFA that recognizes it , and we put

Rec(Ʃ
*)

: = 9 LE Ʃ *Lrecognizable} 、

Question
.
When does a belong to L(A) ?

_

By this ,
I mean : "I think somebody will have a reasonable guess .

Please answer me to avoid long awkward silences !
"



↑ a.
l

.a: "Complete and deterministic" or "DFA"

An automaton A = /Q
,
E

,
S

,
I

, F7 is deterministic if , for each acE ,
the relation

Sa := Sn(QXGayxQ) is functional and total , and #I = 1 .

That is , for every qtQ ,
ae I

,
their exists a unique reQ such that qr.

We sometimes write goa for this unique state.

The transition relation of aDA can also be viewed as a function · QXI- Q ,
~ as a function: + QQ

Fact .

For
any set

Q
,
the triple (Q9

,
0
, ide) is a monoid.

Thus
, by the free property of [*, there exists a unique homomorphis extension

j : Ʃ
*
→ Q

0

of 9 .

Explicitly, i can be defined by induction : j(a) :-ide , and , for any we*, ac I,

5 Iwa) = Xq . p(a) (j(w)(q)) · ) "the function sending qeQ to : glal applied to(wi(q)") .

We also write J(w) := go "w ,
where go is the initial state .



② ② ③ ④
Examples. Ʃ = {a

, b } Ʃ= { a} Ʃ ? {a
,
b

,
c

, d } Ʃ= ha ,
b ☆

a
,b

a asb

→- → 0
→

. → Fon'

s said Q
σ

→⑩ : initial b a , ibe 0 .→

C
~

→ : Final 없

Questions. - What is 2(A) ?
ー

- Are there other automata recognizing the same language? How many?

Bigger ? Smaller ?

- 13 A deterministic ? If not , can we make it so
,
without changing [(A) ?



2
. Determinization

Constructing an equivalent DFA out of an
NFA

using the power set .



Theorem. Any recognizable language can be recognized by
a deterministic automation

.

Proof .
Let A = (F ,

E
,
S

,
I ,F) be an automation recognizing L .

Define the automaton IP(A) : = (5Q
,
I

,
A

,
911

,
G)

,
where :

· PQ is the set of subsets of Q (the power set of Q7

· A : = ((S , a,
T)e JQx[x9Q/T = [geQ(JseS , (s,a,q)+53]

· G:= ( SePQ/SnF + 6] .

Note : P/A) is deterministic .



(Proof of Theorem,p.2)
We now claim that L(A) = L(IP(A)).

Potofim .

We will show by induction that , for any we I* R(ut :=)
Ä(w)= (qeQ 1 there exists a w-path in A such that TTEI and Thr = q3 .

Busecase . W = 5 : both sets are equal to I .

Inductive case. W=a for neI*, acI . By the induction hypothesis ,
All= R(u).

_

Let 9aQ 9 *(w) there exists se[(u) such that (s,a,a) eS Solef of a )

> there exists a u-path it st . ToCI and Mul =S and (2 ,
a

,gleS (deffR)

=>qe R(w) (def of W-path) . A Now
,
we (((A)) Alwa G

cs R(w) nF+ d (weL(A).
□



The theorem gives a determinizationsonstruction .

Note that #P(Q) = 20 , so it has exponential cost , at worst .

Question. Is there a "better" determinization?
_

aib
aib ab ab ab

Example......- recognizes ha
,
b*. Gay . Ga

,
bit

We get 20 states if we determinize.

More generally ,
La := Ga ,

b*. (a) . Ga
, b)
"

can be recognized
by an NFA with n+ 2 states

However : Any deterministic automator recognizing In requires at last 2"States.
ー

&We will see a proof of this later . )



=
(Q

、
Ʃ

.
S .
I

.
F )

The membership problem takes as input an automaton A and a word we*

and asks to determine whether or not we <(A) .

Algorithm .
We will keep trask of a variable W whichsontains the reachable states

after reading w.

" wc- I

2) Whilew = 2 :

㉛ new <-4

4) for all qeW :

与 ) new - new u PreQ1 (q , headsu) , uye 53
" W = new

키 wi tail (w] Runtine : 0/Iw) .##Q]) ·

8) return (WmF + 0]
When A is known to be deterministic

, we can achieve OCIw)) Lexercise)·



The emptiness problem asks
, given an automation A ,

whether or not L(A) =0

The universality problem
" " " … "

"((A) = E*.

For a DFA A
, first compute Reash := [qeQ1 there exist itI and a pathi +q) .

(how ? complexity
?)

· 2(A) =& Fr Reach = &

L ( A) = Ʃ *<⇒ Reach &F
.

For an NFA
, emptiness can be done in the same way.

universality is DSPACE-complete.



3. Closure properties
Building recognizable languages via automata constructions



Theorem Let LeRec(E*

) .

The complement [
*

-L is recognizable , too .

ー

Proof .
Pick (Q ,

E
,
S

,
1

,
F) a DFA recognizing L . (This exists thanks to determinization ! )

The DFA (Q,E, S , I, Q - F) recognizes
[

*

-L
.

Indeed
, for wez*, weE

*
- 1 <s 5(w) eF . □

Theorem. Let (
, ↳ E ReaSE

*

) .
The intersection Leha is recognizable , too.ー

proo Pick Ai = ( Q:
,
Ʃ

,
Si , Fi,Filan NFA rewgnizing hi , for i = 1

,
z

.

Define the automaton A, xAz := (Q, X &z ,
I

,
8
, In x E2 ,

F
, xFz)

where S : = &(191 · 92) : a , (r ,
re)] - (Q,x@)x[x(Q, xQ) (

q -r in A
,
and go

to re in A23.
Than Calaim ! ) ((A

, xA2) = ((A)nL(A2) ·

Pf-ofaim Lidea). An induction onwe shows that a w-path in AxAz
is precisely given by a pair of w-paths in An and A2 .

1 I



↓-
"not all

"

Example. ForEo finite alphabet ,
let NAXI) := Gwe* /[acz/7p,wal = 27] ·

The automaton (E , E ,
S

,
I

,
2) with

δ . { la ,
b

,
c ) εƩ×Ʃ xƩ l a tb

,
a = cP

recognizes NAIE) .

↓ - ↓
θ

Ʃ= {asb . ch a×s
b,c aic

a,b daterminize aG어 complementa G · ∞ ∅

Z A โ m) b

f↓st↓:f.a . m) 必が-- →→→→

⑧ ∞ @ oa bis
a.bC.tacttasano a.bC..da

↓

& Is there a smaller automation than that one which recognizes [
*_ NA(I] ?

A smaller DFA ? If not , how san we be sure ?



Lecture 13 in: D. Kozen, Automata and Computability, Springer-Verlag (1997)

a ,
b a,b L = {waE

'

t labais afactorof w ?

Example ー→②→。.②入 determinize 24 = 16 states .

〜s

b b
delete inaccessible states

→
‰

m ss.-

<-
b

a

collapse last 3 states b asb

mu .
s
‰ · & 6 a M

only 4 states !->o---

<- ↓
b

For Le RecCE*)
,
a DFA A such that L(A) = L is called minimal

if , for every DFA B such that <(B) = L
, #OB3#QA ·

We will prove later that every recognizable Chas a unique minimal DFA.



&rollary .
Let h

.
Lz Rac(E*) · Then herLzeRealE* )

.

上. hy o Lz = Ʃ
*

- (、 . ) ^ ( Ʃ
*

_ _
_
\ ) . ロ

Roote. Let Ai be an automation recognizing Li (i =1 ,
2).

Define A = AlFAz = (Q, FQ2 ,
I, 8

. IFIe ,
FUFz]

,

where 6 : = 3 (g , a ,
v) /[q = Q ,

re@ ,
and (g ,ar]eS1) or (qeQ,Q,

and

(a ,
a

,r)eS] .

Since Q) and Q are disconnected
, if it is an accepting path inA starting

in Ip , then it must end in FR-
Thus, L(A) = ((A1) v L(A2) . □

Question. Which proof do you prefer ? Why ?



Let K
,
L & It

. Thesoncatenation of K and L is

K . Li = { wrol uak
.
ofL } .

Let we It
.
The left quotient of 1 with respect to w is

w
" L : = { ut Ʃ

*

1 wutL } ,

and the right quotient ofL w .r .
t

, w is

L ω"
.= す ut Ʃ*

I uweL } .

The left and right residuals ofL w . r. t .
F are

KIL = 心 L L /K : = □ Lω- +

and wEK

= Gue [* ( for all weK, wat L3 =SueE
* I for all we F ,

nwELY
.

For meI
,

we define inductively the power by L = (s)
,
and= 1"L .

We define the Kleene star by L*: = C L .
Also L= (* L

*

- 45
in general ! )



Thheorem. Let La ReclE*). For any waI*, w" Le RozSE*] and Lw·- ReclEt) .

.PickA = ( Q, 9
,

S
.
F
,

F
) anantonctonfort . Detire A

'
: (Q

,
9
,
8
,
I
'
.F

)
,wher

I : = &qeQ1 there exist gotl and a w-path from go to qh
Then

, for anyue*,

A acceptsnS there exist get reF, and a u-path from g
to o

E there exist GoI ,
raF

, a w-path from go to g ,
and

a u-path from a to r

#) there exist qoI , reF ,
and a (wu)-path from go to r

() A ascepts wu.

So L(A'l = wo" L(A) = v
" L .

The statement about Lw" is proved similarly (eveocisa) .
□



Collary .

Let Le ReclE* ) . The set Gw"L : we** is finite.

Proof . Let A be an automaton such that ((A) = L
.

_

We showed in the previous proof that , for any we*, wil is recognized
by a variant of A obtained by changing the inital states. Thus,
&w" : we

*p[((A')) A a initial-state - variant of Ag .

The second set has at most 2#QA elements. □

Exercise . Let LeReclE
*)

· For
any
ACI*, KIL and L/k are recognizable



Toem . For any K ,
La Rec(E*)

,
K.L is recognizable·

For the proof ,
we will use a variant of automata.

Definition. An automator with -transitions is a tuple A = /Q
,
Z

,
S

,
I

,
F)

,
where

Q
,
I

,
I

,
F are as in the definition of automaton ,

and ScQx([vist)xQ .

A accepts a wood we if there exist k ,
m

, ..., kiwi Iso

such that the NFA A := (E ,
[v9s]

,
S

.
I

,F) accepts the word
to war, serer ... #Plus

Wirel s
kiwi

Equivalently : Lexercissy

Let weI*. A w-path in A isa finite word of edges ise S
*

such that : (1) for every Oxi < I)-1 ,
the target of it the source of This

(2 the soncatenation of the labels of it is equal to m

and acceptance is defined as for NFA's .



Eat . Any automaton with -transitions can be transformed into an automator

without e-transitions that recognizes the same language .

prot See TDI □

Proo- ofTh Let A andB beautomata .

Construct the automator with E-transitions C = (QC
,
I

,
Sc , In , FB) , where

Q : = Qu QB ,
and

Ga : = Sau SBuG (q ,
a
, r) /geFa ,

re Ig].
Claim

. ((C) = L(A) . ((B)

Proof
.

LetweI
.

We ((A) . ((B) there exist neL/A)
, vEL(B) such that w = nv

def .
E) there exist paths in : go 9 in A

, i :o> r in B with 90EIA , 9tFA,
% E Fiz, - FB

why? a
=> there exists w-path it in C starting in IA , ending inFB we L(C) . A



Thheorem. For any LeReclE
*)

,
L
*

-Rec([
*).

Idea
_

↑ A AddE-transition from any final to
nod aproof ! any initial state. V does not work T

오
π

Example .
A =

0 love stale
,
no edges) . What does the construction above do ?

An automator is normalized if #I = #F = 1
,
the initial state is not a target of anyed,aInF =O

'
and the final "

←

Lemma .

For
any automaton

A
,
there exists a normalized automaton A such that

L ( A' ) = L( A ) - 9 ε
}

ProofofTheorem .
Let A be normalized recognizing L-13] . Define B by adding to A

an -transition from the find state to the initial state , and

making the initial state also final .
Then ((B) = 1

*
Lexersive). A



Given A = /Q
,
I

.
S
,
I

,
FI , define A = (Q

'

,
E

,
S

, Giob ,
(fohlPof hmma, Q Lio

, fohwhere

onof S : S v & /io ,
a

, 9) ) there exists itI such that itg in Al

~ 9 (9 ,
a , fo) I

" .

fEp
" "

qif
" "

}

~ & Jio
,
a

, fo) I there exist itI, feF such that its in As .

Then
, foo we It , we have we L(A) < WeLIA') :

If we L(A) , let it be a successfulown on w
,
from isI to-F.

Since &S
,
Ii) = 1w +132 . If 1 /1 ,

then
,
since it is successful , if in 5,

so that Sio
,
w

, f) is in S .

Suppose Iwl > 2. Write w = aw'b
, for a,be[ and we I*

Let it be defined by replacing the first mode in it with to
and the lastmode in it with fo .

it is a w-path inA



Conversely , if we LIA'l ,
let it be a successful run in A.

If Iwl = 1 then there exist is I
, faF such that ief.

Otherwise
,
write w = aub as before .

Since it is successful , it begins with

is Esq for some q*Q , so we can pick it such that i 9.

Similarly, # ends with re fo for some reQ ,
so we can pick-Q

Such that rf . Replacing i with i and to with I yields a

successfu run in A. ㅁ



4. Regulaexpressions
Describing recognizable languages syntactically.



Definition. A regular expression over alphabet [ is an expression of one of the forms :

ー

- , (r
.e .)

Application :Iiep/
ー ε

,

- for any aeZ
: a

1

Same definition written in
'

or
, for any regular expressions r , rc : Bacbus-Naur Form :ㆁ-re. Ve e ::= Ψ lala lereletelet

- m + rz,

- $ )
t

.

The language ,
Lle)

, of a r
.
e · e is defined inductively :

L ( 6 ) : = 6
, L1ε ): ={ a

}

,L(a ): ={a
7
, {(riz) : =2( rn )。2

( 2 )
,α(r、 +re ) =(n ) o α(ra )

,Ll%
、*) =倍 )

「

!

A language Lis regular if there exists a regular expression a such that ( = <(e).

(Some people call this "rational" . Terminology is difficult . )



https://mathshistory.st-andrews.ac.uk/Biographies/Kleene/pictdisplay/

Theoran (Kleene) .
A language LCE

*
is regular if ,

and only if , it is recognizable.

Proof .
""By induction

, for every regular expressione ,
we construct an automation Ae such that Gla)=2(Ae).

For the base cases
,
we have automate Ag :

e ∅ ε a

a

Ae ⑧ → o→ soba→

In each case
, 2(Ae) = 2(e)

For the inductive cases
,
we apply theslosure proporties that we proved before.

e - ry - ie : Given Ar
,

and Arc ,
construct B such that <(B) =2(Ari] .L(Ari].

Defive Ae : =B
.
Then Lltel = - L(Ar . ) .LSArzl

L

( r .
). L(ra ) = L(e)

S.C. Kleene

11909-1994) The cases a = re + r2 and e = r
*

are similar
, using that recognizable languages

are closed under union and star
.



JQ
,
I

,
S

,
I ,F1 -> always , unless mentioned otherwise

=

Roof (continued) .
"E"Let A be an automaton . We constructr a regex such that Chrl

=2)AI .

Let m : = #Q
,
and choose anarbitrary) bijestion [1 . . . .,

nb Q
. We write q := Gli) , Isien .

For each 03kIn
, p , qeQ , define :

(k)

Rp ,q
:= & we Ill there exists a w-path it from ptoq

such that all states in it
, except possibly the first and last,

belong to the set(q1..., 9233 .
(k)

Let p ,geQ .
We construct regexes Upg Sush that Clock) = Ral , for each Oct.

Induction on k : k = 0. The only possible paths have length 1.
Let rp) := sum ofa sush that Spa ,q) &S.

*

coskEn)

Rp.g 器 =Rpg " +Rp 9,(R, hm .) .Rizg 0
k= k+ 1. Note that

cK )

So define Vp,g
: = rpim) + rp,que,: (ra(* rle, ,9

Finally ,rp . g={ 「 ; “:g, and v : = sum of ip, such that peI and ge F .

□



(+ Thompson ,
sometimes)

The algorithm used for "E" in the proof is called McNaughton - Yamada .

Other algorithms , sometimes with better outcomes
,
exist

, notably ,

Brzozowski - McCluskey ,
which you will see in the TD ,

and the

state elimination method
,
which relies on Arden's Lemma :

Lemma
. Let K

,
L@[*. The equation = K .*+ L has a smallest solution in PE*)

,
_

namely ,
K* L

. If 3@K ,
the solution is unique.

Proof
.

See TD . □



Pot of "E" in Kleens's theorem , using state elimination method .

Let A be an automation. For every qaQ , define Lq := Gwe [*

/ there exist feF andqf).
Nots that Lq=o Ear

: L v Eq ,
where

q0δ②
F"

Equ : = (a + 2/ (9 ,
g ,risf) and IqF :-[ it a Zg ,

w ,
w'Ehr

To obtain a regular expression ,
we successively solve the system of equations in #Q unknowns :

M

l
Rn = :

Ʃ
angi 'Ro t Iquf

using Arden's Lemma
,
in the same

: '

Rn = Z Zan
,ai

: Ri + 1a
,
F

way as Gaussian elimination for

systems of linear equations.

For instance
, starting from the last equation, it has the form # = ***, where

X = Rm
,
K = Ʃ

gn ,gn
,
L = ƩquigiRitIaniF. So Rn = KtL

.



Example 2.6 in: J. Sakarovitch, Elements of Automata Theory, Cambridge University Press (2009), translated from French by R. Thomas

Example. aGtD MNaughton - Yamada :rr(r* ras
ー

(07
r

더 1
,
2

( at a - at . a↑10) = ( ·3) is wh=" atbat ) = ( at - #

a + a . a
*

. a

+
us r() =... = fla

+b
-

at (袋品 ) &

r = r" t ε = bltattE .
a+ b .b

*
. a

(a+b)
* at = a+ b+a

√ = (ε tbt)a

Elimination : { Oy
z a. m + b . rz + c

ns { Ve = arntb . - bt . arats = btarit .

「
2

= a. r
,+ b . rz 「

2
a bt . ar

.

ri = bta)
*

MuS { r
2

= 5t . a . (bta )
*

= bta( It
Another way to write

this : (a+b)
*

a+2 .



https://www.cs.cornell.edu/~kozen/https://en.wikipedia.org/wiki/John_Horton_Conway

A Kleene algebra is a tupls (K ,
0
,
1

,+, , ((
* ) where :

· SK
,
0
,
1

, +,
· ) is a unital semiring ,

and

& and are associative
,
+ is commutative, distributes over +,

O is neutral for + and 1 is neutral for .
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* If b + a . c = then a
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and if b+cae then bat

where "xsy" means : "x + y = y" -

Example . (Rech[ * ) , 0 ,
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,
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* ) is a Kleene algebra .

Theorem
.
Let ris be regular expressions. Then Chrl =<)s) if , and only if ,

DextrRozan
_

(Conway ,
Rozen) for every

Pleene algebra Kand (Kalaez-K*, rantRa] = starka] ink.

"Kleene algebras are a sound andcomplete axiomatization of regular languages .

"

Roof .
Omitted .

See :D
.
Rozen

,
"A completeness theorem for Bleene algebras ...

"

(1994) .




