

7. Monoid recognition

Defining regular languages via algebra.

Let $M = (M, \cdot, 1)$ be a monoid. A **congruence** on M is an equivalence relation \equiv on M

such that, for any $m, m', x \in M$, if $m \equiv m'$, then $m \cdot x \equiv m' \cdot x$ and $x \cdot m \equiv x \cdot m'$.

Fact. The **quotient** of M by \equiv gives a monoid $M/\equiv = (M/\equiv, \cdot, 1)$, where, for any $m, n \in M$:

$$[m] \cdot [n] := [m \cdot n] \quad \text{and} \quad 1 := [1].$$

Example. Let $A = (Q, \Sigma, \cdot, i, F)$ be a DFA. Define the relation \equiv_A on Σ^* by:

$$\text{for } u, v \in \Sigma^*, \quad u \equiv_A v \stackrel{\text{def.}}{\iff} \text{for all } q \in Q, \quad q \cdot u = q \cdot v.$$

Then \equiv_A is a congruence on Σ^* : it is an equivalence relation (**exercise**), and,

for any $u, u', x \in \Sigma^*$, if $u \equiv_A u'$, then $u \cdot x \equiv_A u' \cdot x$, because, for all $q \in Q$,

$$q \cdot (u \cdot x) = (q \cdot u) \cdot x = (q \cdot u') \cdot x = q \cdot (u' \cdot x), \quad \text{using the action axioms.}$$

By the **isomorphism theorem for monoids**, $\Sigma^*/\equiv_A \longrightarrow Q^Q$ is an injective monoid morphism.

$$[u]_A \longmapsto (q \mapsto q \cdot u).$$

Indeed, \equiv_A is the kernel of $\Sigma^* \xrightarrow{\Phi} Q^Q$ obtained by currying $Q \times \Sigma^* \xrightarrow{\Phi} Q$.

Proposition. Let A be a DFA. Then $\mathcal{L}(A) = \varphi_0^{-1}(P)$, where $P := \{ f \in Q^Q \mid f(i) \in F \}$.

Proof. For any $w \in \Sigma^*$, $\varphi_0(w)(i) = i \cdot w$. Thus, $\varphi_0(w) \in P$ if, and only if, $i \cdot w \in F$. \square

This suggests a definition of recognition in terms of monoids, instead of DFA's:

Def. Let M be a monoid, and $\varphi: \Sigma^* \rightarrow M$ a (monoid) morphism.

We say that φ recognizes $L \subseteq \Sigma^*$ if there exists $P \subseteq M$ such that $L = \varphi^{-1}(P)$.

Theorem Let A be a DFA. The morphism π_{\equiv_A} recognizes $\mathcal{L}(A)$.

Proof. Note that $\tilde{\varphi}_0 \circ \pi_{\equiv_A} = \varphi_0$, as in the diagram on the right.

By the Proposition, $\mathcal{L}(A) = \varphi_0^{-1}(P) = \pi_{\equiv_A}^{-1}(\tilde{\varphi}_0^{-1}(P))$.

$$\begin{array}{ccc} \Sigma^* & \xrightarrow{\varphi_0} & Q^Q \\ \pi_{\equiv_A} \downarrow & \swarrow \tilde{\varphi}_0 & \uparrow \\ \Sigma^*/\equiv_A & & \end{array}$$

Corollary Let A be a DFA. For any $w \in \Sigma^*$, if $w \in \mathcal{L}(A)$, then $[w]_{\equiv_A} \subseteq \mathcal{L}(A)$.

Proof. Pick $P \subseteq \Sigma^*/\equiv_A$ such that $\mathcal{L}(A) = \pi_{\equiv_A}^{-1}(P)$. Then $p := \pi_{\equiv_A}(w) \in P$.

Thus, $[w]_{\equiv_A} = \pi_{\equiv_A}^{-1}([p]) \subseteq \pi_{\equiv_A}^{-1}(P) = \mathcal{L}(A)$. \square

let A be a DFA. We call the image of the morphism $\varphi_a : \Sigma^* \rightarrow Q^Q$ the **transition monoid** of A , and denote it by $T(A)$.

Concretely, $T(A)$ is the set of functions $Q \xrightarrow{f} Q$ which "act like a word", i.e., for which there exists $w \in \Sigma^*$ such that $f(q) = q \cdot w$ for all $q \in Q$.

Since $\varphi_a : \Sigma^* \rightarrow T(A)$ is a surjective morphism and \equiv_A is its kernel, we have

$$T(A) \cong \Sigma^* / \equiv_A,$$

by the isomorphism theorem for monoids.

In particular, $T(A)$ also recognizes $L(A)$.

We can think of $T(A)$ as analogous to the automaton $\text{Reach}(A)$: for any $q \in Q$, q is reachable if, and only if, there exists $f \in T(A)$ such that $f(i) = q$

We have seen that any DFA gives rise to a finite monoid recognizing the same language.

Conversely, let $M = (M, \cdot_M, 1_M)$ be a finite monoid, $\varphi: \Sigma^* \rightarrow M$ a morphism, and $P \subseteq M$.

We define the DFA $A_{\varphi, P} := (M, \Sigma, \cdot, 1_M, P)$, where, for $q \in M$ and $a \in \Sigma$:

$$q \cdot a := q \cdot_M \varphi(a).$$

Lemma. For any $w \in \Sigma^*$, $q \in M$, $q \cdot w = q \cdot_M \varphi(w)$. (Proof: next slide.)

Theorem. $\mathcal{L}(A_{\varphi, P}) = \varphi^{-1}(P)$

Proof. Let $w \in \Sigma^*$. Then $w \in \mathcal{L}(A_{\varphi, P}) \iff 1_M \cdot w \in P$ (def. of acceptance)

$$\iff 1_M \cdot_M \varphi(w) \in P \quad (\text{Lemma})$$

$$\iff w \in \varphi^{-1}(P). \quad (\text{definition \& unit law in } M) \square$$

Conclusion A language $L \subseteq \Sigma^*$ is regular if, and only if, L can be recognized by a finite monoid.

Lemma. For any $w \in \Sigma^*$, $q \in M$, $q \cdot w = q \cdot_M \varphi(w)$.

Proof. Induction on w . $w = \varepsilon : q \cdot_M \varphi(\varepsilon) = q \cdot_M 1_M$ (φ morphism)

$$\begin{aligned} &= q && (\text{unit law in } M) \\ &= q \cdot \varepsilon . && (\text{def. of } \cdot) \end{aligned}$$

$w = ua$, where $u \in \Sigma^*$, $a \in \Sigma$: $q \cdot_M \varphi(ua) = q \cdot_M \varphi(u) \cdot_M \varphi(a)$ (φ morphism)

$$\begin{aligned} &= (q \cdot u) \cdot_M \varphi(a) && (\text{IH}) \\ &= (q \cdot u) \cdot a && (\text{def. of } \cdot) \\ &= q \cdot (ua) . && (\text{def. of } \cdot) \quad \square \end{aligned}$$

Proposition. Let $f: \Sigma^* \rightarrow \Delta^*$ be a morphism. If $L \in \text{Rec}(\Delta^*)$, then $f^{-1}(L) \in \text{Rec}(\Sigma^*)$

Proof. Pick a finite monoid M , a morphism $\varphi: \Delta^* \rightarrow M$ and $P \subseteq M$ such that

$L = \varphi^{-1}(P)$. We define $\psi := \varphi \circ f$, which is also a monoid morphism.

Now $f^{-1}(L) = f^{-1}(\varphi^{-1}(P)) = \psi^{-1}(P)$, so $\psi: \Sigma^* \rightarrow M$ recognizes $f^{-1}(L)$. \square

Proposition Let M be a monoid. If N is a quotient or a submonoid of M , and

("stability") N recognizes a language L , then M also recognizes L .

Recall: $\begin{array}{c} \Sigma^* \xrightarrow{\bar{\varphi}} M \\ \downarrow \varphi \\ \Sigma \end{array}$

Proof. Suppose N is a quotient of M , say by $\psi: M \rightarrow N$.

Let $\varphi: \Sigma^* \rightarrow N$ and $P \subseteq N$ be such that $L = \varphi^{-1}(P)$. For each $a \in \Sigma$,

pick $\varphi'(a) \in M$ such that $\psi(\varphi'(a)) = \varphi(a)$. By induction/free property, $\varphi \circ \bar{\varphi}' = \varphi$.

Therefore, $L = \varphi^{-1}(P) = \bar{\varphi}'^{-1}(\psi^{-1}(P))$, so $\bar{\varphi}': \Sigma^* \rightarrow M$ recognizes L .

Exercise: the case where N is a submonoid. \square

8. The syntactic monoid

An algebraic analogue of the minimal automaton.

Let $L \subseteq \Sigma^*$. The **syntactic congruence** of L is the relation \sim_L on Σ^* defined by:

for $u, v \in \Sigma^*$, $u \sim_L v \iff$ for all $x, y \in \Sigma^*$, $xuy \in L$ if, and only if, $xv y \in L$.

Theorem The syntactic congruence \sim_L coincides with \equiv_{A_L} , where A_L is the Nerode automaton of L .

Proof. For any $u, v \in \Sigma^*$, we have

$$\begin{aligned} u \equiv_{A_L} v &\iff \text{for all } K \in Q_L, \quad K \cdot u = K \cdot v && (\text{def. of } \equiv_{A_L}) \\ &\iff \text{for all } x \in \Sigma^*, \quad (x^{-1}L) \cdot u = (x^{-1}L) \cdot v && (\text{def. of } Q_L) \\ &\iff \text{for all } x, y \in \Sigma^*, \quad y \in (xu)^{-1}L \text{ iff } y \in (xv)^{-1}L && (\text{def. of } \cdot \text{ and } =) \\ &\iff u \sim_L v. && (\text{def. of } \sim_L). \quad \square \end{aligned}$$

In particular, \sim_L is a congruence, and we can define a monoid $M_L := \Sigma^* / \sim_L$, which we call the **syntactic monoid** of the language L .

Theorem. The syntactic monoid M_L is isomorphic to the transition monoid of the Nerode automaton of L .

Proof. $\varphi : \Sigma^* \rightarrow T(A_L)$ is surjective, so $\Sigma^* / \ker \varphi \cong T(A_L)$, and $\ker \varphi = \equiv_{A_L} = \sim_L$. \square

Example. Let $L = (ab)^*$. We compute the syntactic monoid $M_L = \Sigma^*/\sim_L$.

We start with $[\epsilon]$ and $[a]$, which are distinct because $\epsilon b \notin L$ but $ab \in L$.

Similarly, we have $[b]$, distinct from $[\epsilon]$ and $[a]$. (Why?)

Now $[ab] \neq [\epsilon]$ because $a \cdot (ab) \cdot b \notin L$ but $a \cdot \epsilon \cdot b \in L$.

Also, $[ab] \neq [a]$ and $[ab] \neq [b]$.

Similarly, $[ba] \notin \{[\epsilon], [a], [b]\}$. Also, $[ba] \neq [ab]$, since $ba \cdot ab \notin L$ but $abab \in L$.

Finally, $[aa] = [bb]$ since for all $x, y \in \Sigma^*$, $xaay \notin L$, and $xbby \notin L$.

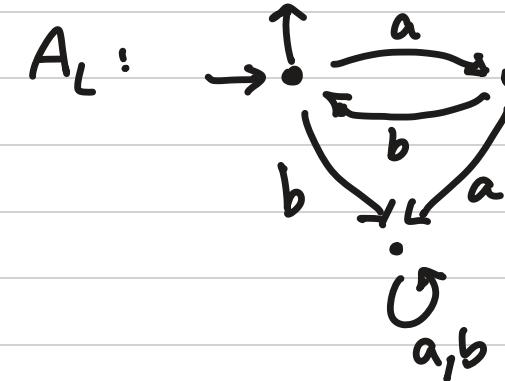
We thus obtain 6 classes : $[\epsilon], [a], [b], [ab], [ba], [aa]$. The union is Σ^* (check!)

Multiplication table :

(we write
 $0 := [aa]$,
 $1 := [\epsilon]$,
and omit all $[]$.)

	1	a	b	ab	ba	0
1	1	a	b	ab	ba	0
a	a	0	ab	0	a	0
b	b	ba	0	b	0	0
ab	ab	a	0	ab	0	0
ba	ba	0	b	0	ba	0
0	0	0	0	0	0	0

This is also $T[A_L]$, where



The syntactic monoid is also minimal, in a precise algebraic sense.

(non-strict)

Let M, N be monoids. We say M divides N if there exist a submonoid N' of N and a surjective morphism $N' \rightarrow M$.

Notation: $M \prec N$

(Unproved)

Remark. \prec is the smallest transitive relation on monoids that contains "submonoid" and "quotient".

Theorem. Let $L \in \text{Rec}(\Sigma^*)$. A finite monoid N recognizes L if, and only if, M_L divides N .

Proof. " \Leftarrow " If M_L divides N , then, since M_L recognizes L , so does N by **stability**.

" \Rightarrow " Suppose $\varphi: \Sigma^* \rightarrow N$ and $P \subseteq N$ are such that $L = \varphi^{-1}(P)$. We **claim**: $\ker \varphi \subseteq \sim_L$.

To see this, let $u, v \in \Sigma^*$ with $\varphi(u) = \varphi(v)$. Let $x, y \in \Sigma^*$. Then $\varphi(xuy) = \varphi(x)\varphi(u)\varphi(y)$
 $= \varphi(x)\varphi(v)\varphi(y) = \varphi(xvy)$,
so in particular, $\varphi(xuy) \in P$ iff $\varphi(xvy) \in P$. Thus, $u \sim_L v$. \square

By the **claim**, there is a morphism $\Sigma^*/\ker \varphi \xrightarrow{f} \Sigma^*/\sim_L$, sending $[u]_{\ker \varphi}$ to $[u]_{\sim_L}$.

The image of $\tilde{\varphi}: \Sigma^*/\ker \varphi \rightarrow N$ is a submonoid N' of N isomorphic to $\Sigma^*/\ker \varphi$, say $\varphi: N' \xrightarrow{\cong} \Sigma^*/\ker \varphi$.

Now $f \circ \varphi: N' \rightarrow M_L$ is the required morphism. \square

Conclusion. M_L is a powerful invariant for a regular language L .

We will see that properties of finite monoids can often be shown to correspond precisely to properties of regular languages.

9. Star-free languages

What can we do without Kleene star?

A **star-free expression** over alphabet Σ is an expression e built from the syntax:

$$e ::= a \mid e+e \mid e \cdot e \mid e^c \mid \epsilon \mid \phi \text{ where } a \in \Sigma.$$

The **language defined** by a star-free expression e is $L(e)$, defined inductively as:

$$\begin{array}{lll} \cdot L(a) := \{a\} & \cdot L(\epsilon) := \{\epsilon\} & \cdot L(e^c) := \Sigma^* - L(e). \\ \cdot L(e_1 + e_2) := L(e_1) \cup L(e_2) & \cdot L(e_1 \cdot e_2) := L(e_1) \cdot L(e_2) & \cdot L(\phi) := \emptyset \end{array}$$

A language L is **starfree** if $L = L(e)$ for some starfree expression e .

Fact. Any starfree language is regular. Proof Closure properties of $\text{Rec}(\Sigma^*)$. \square

Examples.

- Any finite language is starfree.
- Any **cofinite** language is starfree.
- The intersection of two starfree languages is starfree, and Σ^* is starfree.
- The language $(ab)^*$ is ... starfree! $(ab)^* = \{\epsilon\} \cup (a\Sigma^* \cap \Sigma^* b \cap \Sigma^* - (\Sigma^* aa\Sigma^* \cup \Sigma^* bb\Sigma^*))$
- How about the language $(aa)^*$?

$$((e_1)^c + (e_2)^c)^c$$

$$\phi^c$$

Let M be a monoid. A subset G of M is a **group contained in M** if:

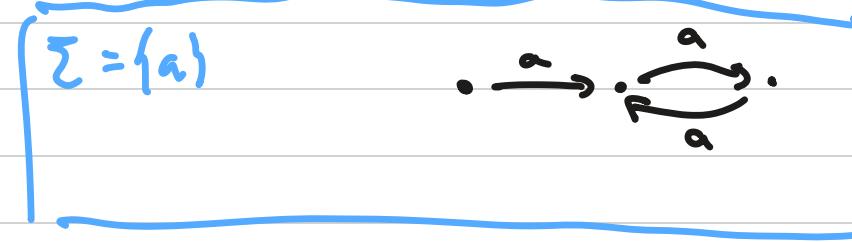
- G is closed under multiplication: for all $m_1, m_2 \in G$, $m_1 \cdot m_2 \in G$
- G has a unit 1_G : for all $m \in G$, $1_G \cdot m = m = m \cdot 1_G$
- for every $x \in G$, there exists $y \in G$ such that $xy = 1_G = yx$.

groups contained in M
Up ← ∇
Subgroups of M \hookrightarrow

NB: We do not require that $1_G = 1_M$, and it is not the case in general.

Example

The transition monoid of A has three elements: 1 , a , and a^2 . The subset $\{a, a^2\}$



	1	a	a^2
1	1	a	a^2
a	a	a^2	a
a^2	a^2	a	a^2

is a group contained in $T(A)$, with unit element $a^2 \neq 1$.

Example If M is a monoid and $e \in M$ is **idempotent**, i.e., $e^2 = e$, then $\{e\}$ is a group contained in M .

We call this a **trivial** group contained in M .

Equivalently, G contained in M is trivial iff $\#G = 1$.

A monoid M is **aperiodic** if every group contained in M is trivial.

Theorem. A language L is starfree if, and only if, M_L is finite and aperiodic.

(Schützenberger, 1965)

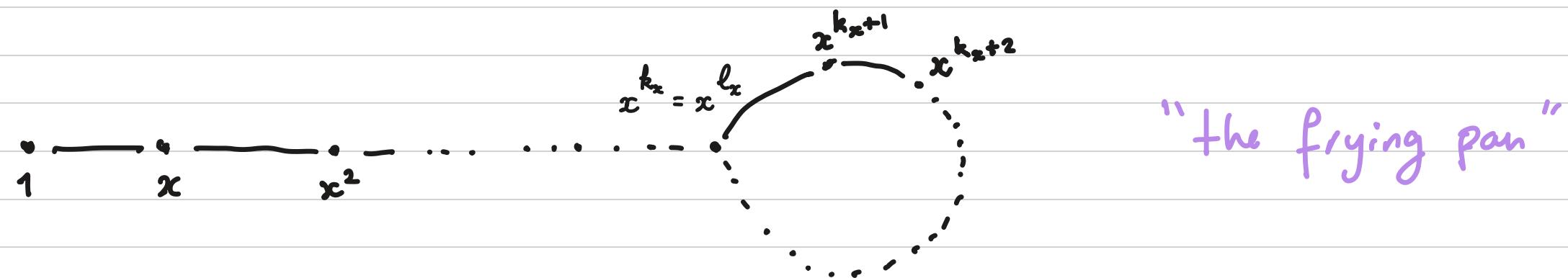
Let M be a finite monoid. For every $x \in M$, there exist $k > l \geq 0$ such that $x^k = x^l$.

(by the Pigeon-hole principle)

Define $k_x :=$ the smallest k such that there exists $0 \leq l < k$ with $x^k = x^l$, and

$l_x :=$ the smallest $l \geq 0$ such that $x^l = x^{k_x}$, and $p_x := k_x - l_x$.

Since $x^0, x^1, \dots, x^{k_x-1}$ are all distinct, we can visualize this as:



Exercise. $\{x^i \mid l_x \leq i < k_x\}$ is a group contained in M , isomorphic to $\mathbb{Z}/p_x\mathbb{Z}$.

This lets us characterize aperiodic finite monoids in a concrete way, and shows how they are "opposite" to finite groups:

Proposition let M be a finite monoid. The following are equivalent:

(1) M is aperiodic ; (2) for all $x \in M$, $p_x = 1$; (3) there exists $\ell \in \mathbb{N}$ such that $x^\ell = x^{\ell+1}$ for all $x \in M$.

Proof (1) \Rightarrow (2) By the [Exercise](#), $G_x := \{x^{\ell_x}, \dots, x^{\ell_x-1}\}$ is a group contained in M .

If M is aperiodic, then this group must be trivial. Thus, $p_x = \#G_x = 1$.

(2) \Rightarrow (3) Note that $x^{\ell_x} = x^{\ell_x + p_x} = x^{\ell_x + 1}$. Define $\ell := \max \{ \ell_x : x \in M \}$.

Then, for any $x \in M$, $x^{\ell+1} = x^{\ell_x + 1} \underbrace{x^{\ell - \ell_x}}_{\substack{\text{this notation is legal since } \ell \geq \ell_x \\ \text{it is NOT allowed to have negative exponents.}}} = x^{\ell_x} x^{\ell - \ell_x} = x^\ell$.

\hookrightarrow this notation is legal since $\ell \geq \ell_x$!
it is NOT allowed to have negative exponents.

(3) \Rightarrow (1) Let G be a group contained in M . Let $g \in G$ be arbitrary. By (3), $g^\ell = g^{\ell+1}$.

Pick $h \in G$ such that $gh = 1_G$. Then $1_G = g^\ell h^\ell = g^{\ell+1} h^\ell = g$.

We conclude that $G = \{1_G\}$, so G is trivial. \square

Exercise let M be a finite monoid. The following are equivalent:

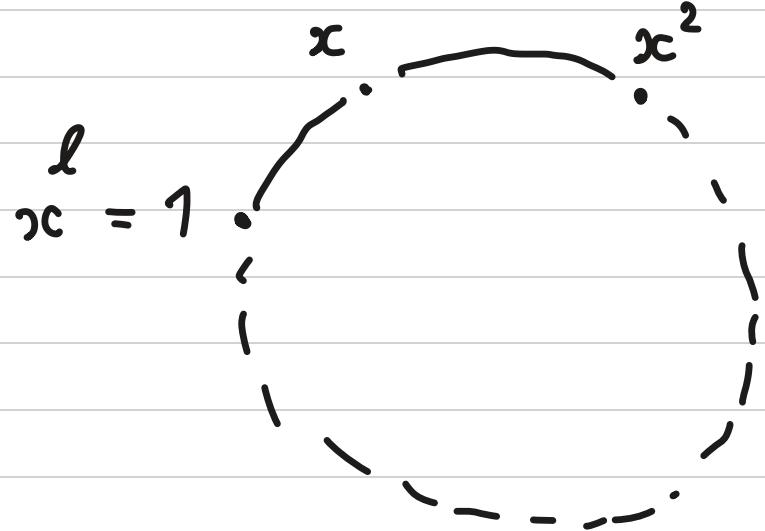
(1) M is a group ; (2) for all $x \in M$, $\ell_x = 0$; (3) there exists $\ell \in \mathbb{N}$ such that $x^\ell = 1_M$ for all $m \in M$.

A finite monoid is **aperiodic** iff all of its frying pans are only handles:

for all x :

A finite monoid is a **group** iff all of its frying pans have no handles:

for all x :



(The technical term for "frying pan" is **cyclic submonoid** or **single-generated submonoid**)

An additional perspective on starfree languages, via first-order logic:

Let φ be a sentence in the (relational) signature

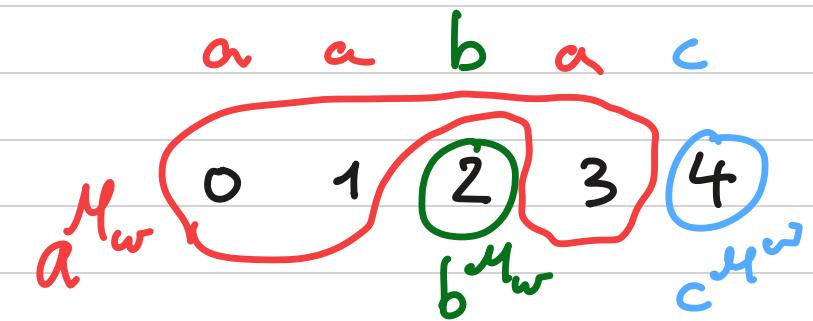
$L = (\phi, \{ \leq \} \cup \Sigma, \text{ar})$, with $\text{ar}(a) := 1$ for all $a \in \Sigma$,
and $\text{ar}(\leq) := 2$.

R. Bob-Waksberg et al., "BoJack Horseman"
(2014-2020)

A finite word $w \in \Sigma^*$ gives an L -structure $M_w := (M_w, \leq^{M_w}, (a^{M_w})_{a \in \Sigma})$, where:

$M_w := \{0, \dots, |w|-1\}$, $\leq^{M_w} := \leq$, for each $a \in \Sigma$, $a^{M_w} := \{0 \leq i < |w| : w \text{ has letter } a \text{ at position } i\}$.

Example Let $\Sigma = \{a, b, c, d\}$, $w := aabac$. Then $M_w = (\{0, 1, 2, 3, 4\}, \leq, (a^w, b^w, c^w, d^w))$



$M_w \models \exists x (a(x) \wedge \exists y (x \leq y \wedge b(y)))$
 $M_w \not\models \exists x (\forall y (x \leq y \rightarrow a(y)))$

We define $L(\varphi) := \{w \in \Sigma^* \mid M_w \models \varphi\}$ and call this the language defined by φ .

A language $L \subseteq \Sigma^*$ is first-order definable if $L = L(\varphi)$ for some first-order formula φ .

Exercise. Give first-order definitions of the languages

$\Sigma^* aa \Sigma^*$, $a \Sigma^*$, and $(ab)^*$.

Theorem

A language $L \subseteq \Sigma^*$ is starfree if, and only if, L is first-order definable.

(Schützenberger;
McNaughton & Papert)

We thus have three equivalent conditions on a language $L \subseteq \Sigma^*$:

- 1) L is starfree
- 2) L is first-order definable
- 3) M_L is finite and aperiodic.

We will only prove $(1) \Leftrightarrow (3)$ and $(1) \Rightarrow (2)$ here. (We may do $(2) \Rightarrow (3)$ in the Logic course.)

The proof will take us on a little tour of typical techniques in the theory of monoids, automata, and logic, of which we will only see the tip of the iceberg here.