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77 Monoidrecognition
Defining regular languages via algebra.



Let M = (M
,

%

,
11 be a monoid. A congruence on M is an equivalence relation = on M

such that
, for any m ,m' , xeM , if m = m' , they m . x = m' · x and x .m = x .m·

Et. The quotient of M by = gives a monoid M/= = (M/ , 0

,
1)

,
where

, for any
m

, n = M :

[m] · [n] := [m . m] 1 : = [ 1]·and

Example . Let A = /Q
,
2
,

0

,
i
,
F) be a DFA . Define the relation Ef on

*

by :

fo u
,
ve**, u = <=>

alet
.

for all qeQ , qu = g
. u.

Then E is a congruence on
I*: it is an equivalence relation (exercise)

,
and

A

for any nu' ,xe*, if U=U ,
then ux = Us

,
because

, for all qeQ ,A

9. (ux) = (q. u) . x = (g) . u) - x =

g
.('x)

, using the action axious.

By the isomorphism theorem for monoids . [
*

/En -> QQ is an injective monoid morphism .

[u]
a

-> (q ++ q
. n)

.

Indeed
, En is the kerrel of [
* Q obtained by currying QXE

*
-Q.



Proposition. Let A be a DFA .
Then 2)A) = %o" (P), where P : = &feQ

*

/ fileFY .

_

Proof. For
any weI*, Yo(w)(i) = Tow .

Thus
, 4 : /wIEP if , and only if , ioweF. A

_

This suggests a definition of recognition in terms of monoids , instead of MFA's :_

빠 Let M be a monoid
,
and y :*-> M a Smonoid) morphism .

We say thaty recognizes ( - I
*

if there exists PCM such that L = c "(P).

Theorem Let A be a DFA
.
The morphism it recognizes L(A)

Roof. Note that 700= = Go ,
as in the diagram on the right. Ʃ

*
→
4. QQ

By the PropositionsL ( A )=
φ

o" (PT=iA ( ."
(

P ) ). を
6.
n~ □

A

Collary Let A be a DFA
.
For

any
weI*, if weLIA) , then [w]nELJA] .

Prof . Pick PCI* such that LIA)= (p) . There p := The(P

Thus ,[WJ
≡

A =
T≡ A 'Sp) ≤ *im

^ (p) = L (A ) - □



Let A be a DFA .
We call the image of the morphism Go

:* -> * the

transition monoid of A ,
and denote it by T(A).

Consistely , T(A) is the set of functions &EQ which "act like a word"
,
i.e.,

for which there exists we such that f(q) = gow for all qeQ.
Since 40
:* -> TJA) is a surjective morphism and EA is its kene , we have

T (A ) ⇌ 도
*

/A '

by the isomorphism theorem for monoids.

In particular , TCA) also recognizes 2(A) .

We can think of TCA) as analogous to the automator Reach (A) : for any qeQ,

& is reashable if ,
and only if , there exists fET(A) such that fli) = q



We have seen that any DFA gives rise to a finite monoid recognizing the same language.
Conversely , let M = ( M, m , 1m) be a finite monoid , y :* ->M a morphism , and PEM.

We define the DFA Ay
,
p
:= (M ,

2
,

0

, In , P1 , where , for qeM andaE :

&
· a := qm y(a)

For any
we*, qeM , go = qi4(w) . (Proof : next shide .

)Lemma

Theorem
.

L ( Ae
,p
) = φ

" ( P)
_

Pot . Let we It ·
Then we <(Ayp) #> In we P Idef . of acceptance)

= 1m in g(w) e P & Lemmal

() w 5 4
" sp) . (definition & unit law in MJI

Conclusion A Sanguage L & [
*
is regular if , and only if , I can be recognized by a finite monoid.



Lemma
.

-
For any

weE*, qeM , gow =

q in 4fwl

Roof . Induction on w .
W = 3 : 9 m 4(5) = q <M lymorphism

= q I uit law in M

=

go ε . (def - of >

w = na
,
where ne [*, at : q m g(ual = &i Y1u]m plat leg morphism

=

guI 'm φ la) (1H)

= ou ) o a [def . of of

= go (ua ) . Idef. of o) 1



Proposition. Lst f : z
*
-> A

*

be a morphism . If Le Rea(A
*

) , then f"(L)eRecS[
*)

Prouf Pick a finite monoid M
,
a morphism 2 : A

*

-> M and P&M such that
-

L = p
+ (P) . We define 4 := pof , which is also a monoid morphism.

Now f"(L) = &"(y"(P)) = +"(P) , so y
:
*
-M recognizes of"(L) .

I

Doposition Let M be a monoid. If N is a quotient or a submonoid of M ,
and

("stability") N recognizes a language L , then M also recognizes L.
Recall:m

Ʃ

Roof. Suppose N is a quotient of M . say by 4 : M- N.

Let y
:[* - N and PEN be such that L = g"(P) . For each acz,

pick cla)E M such that p(y(a)) = y(a) . By induction/free property , To T= y.
Therefore , (="(P)="(4"(P)) , so i:

*
- M recognizes L .

Exercise : the case where N is a submonoid .

□



8. Thesyntaxismonoid

An algebraic analogue of the minimal automation.



Let LEE*. The syntastic congruence of L is the relation - on
*

defined by :
def.

for nive I*, u my v く⇒ for allyeI* , anyth if , and only if,oyth

Theorem The syntactic congruence v> coincides with EA,
where A

,
is the Nerode automaton

_

아
Proof. For

any
n
,
oaI*, we have

u =
A,
v #> for all REQ ,

K . u = Koo (def . of FA)
s=⇒ for all eeƩ *

,

(
x'L )ou = ( x-" L) ow (def . of Q)

<a) forallx , ye Ʃ * , ye " Liffyf "
L

( def- of o and = )

(E) u rn o . Idef-of ~). It

In particular , w is a congruence , and we can define a monoid My := 2
*

/ ,
which

L

we call the syntactic monoid of the language L.

Theorem. The syntactic monoid My is isomorphic to the transition monoid of the Nerode automation ofL .
_

Roof . %o : [
*

-T(A) is surjective , so E*/kerx. TCAL) , and her 4. : FA= -L .

#



Example .

Let = (ab)*. We compute the syntactic monoid My = [
*

/.
We start with [C] and [a]

,
which are distinct because Eb * L but abet.

Similarly , we have [b]
,
distinct from [S] and [a] . (Why?

Now [ab] = [s] because a (ab) · b @L but a s . beL
.

Also
, [ab] + [a] and [ab] + [b]

Similarly , [ba] @G[s] , [a] , [b] 3 .

Also
,
[ba] = [ab]

,
since ba · abeL but ababeL

Finally, [aa) = [bb] since for all eye[*, way L , andbby L .

We thus obtain b classes : [s]
,
[a]

,
[b]

,
[ab]

,
[ba]

·
[aa] · The union is I

*

Scheck!

Multiplication table : ^ ab ab ba 0 This is also TCA) , where

(we write ^ ^ ab ab ba ㅇ

0 := [aa], ㅇ ab o a ㅇ

7 : = [ 9 ] ,

담 덤 ba 8 b ㅇ ㅇ

and omitall [J . / 떪 쌨 당 음 양 ba ㅇ

A

い。ㅇ ㅇ

apb
ㅇ ㅇ ^ ㅇ ㅇ ㆁ



The syntactic monoid is also minimal
, in a precise algebraic sense.

[non-strict)
Let M

,
N be monoids. We say M divides N if there exist a submonoid N of N and

a surjective morphism N> M.

Notation : M = N
(Unproved)
Remark

.

= is the smallest transitive relation on monoids that contains "submonoid" and "quotient".
_

Theorem
.

Let Lc RecS[* )
·
A finite monoid N

recognizes (if , and only if , My divides N._

Roof .""If My divides N ,
then

,
since My recognizes L , so does N by stability .

=> "Suppose 4 : [
*

-N and PEN are such that L = 4"[P) . We claim : Ker 4 =v.

To see this , let u ,o I
*
with ySul = y(0) . Let zaye[*. Then glassy) = y (x) ylulgly)

=

φ(2o) φ(o) φcy) = φ(avy) ,
so in particular , ylanyle Piff ylaylep .

Thus
,
nu
,
0

. A

By the claim , there is a morphism [
*

/Kery Ex[
*

/my , sending [v]by to [u]m,
The image of 5 : E

*

/Kerr- > N is a submonoid N/of N isomorphic to [
*

/Keny : say 4 :NEboy.

Now for : N- My is the required morphism. A



Conclusion.
-

My is a powerful invariant for a regular language L

We will see that properties of firits monoids can often be shown to correspond precisely to

properties of regular languages.



9. Star-freelanguages
What can we do without kleeve star ?



A star-free expression over alphabet [is an expressione built from the syntax :

e : = ale +ele . ele 1 : /d where at E.

The language defined by a star-free expression e is Cle) , defined inductively as :

Slal :a hay / 2): = 9 3 · 2(e) : = [
*
- <(e)

.

. Lle . ter ) : = Lle . loLlea )-Lle-ezLle、 lLle.) 。 [ (¢ ) := φ
A language ( is starfree if L = <(e) for some starfree expression a

East . Any starfree language is regular. Roof Closura properties of RechE
*) . I

Examples. · Any finite language is starfree .

((e)" + (e)"
a

⑲
· Any cofinite language is starfice . / √

↓
· The intersection of two starfrea languages is starfres , and I* is stafree.

· The language (ab)* is... starfree ! (ab)
*

=1skv/n ** nE*b n[
* -(Z*aaE* r[*bb[*))

· How about the language (aa)*?



Let M be a monoid. A subset G of M is a group contained in M if :

· G is closed under multiplication : for all m,,mzzG ,
m
.
· myG

· G has a unit 1G : for all meG , 1g ' m = m = m . 1G groups contained in M
UH-t

for every G ,
there exists yeG such that sy

= 1g = y. subgroups of Mo

#B : We do not require that 1G = 1 m ,
and it is not the case in general .

xe The transition monoid of A has three elements : 1
,
a
, and a .

The subset Ga
,
all

そ 二似 ..
is a group contained in

TCA)
,
withσ

¢
… …

…十ar a unit element a? * 1 .

ー

ar az a ar

Exampl If M is a monoid and etM is idempotent , i .e., e-e ,
then Get is a group contained in M.

We call this a trivial group contained in M.

Equivalently , G contained in M is trivial iff #G = 1 .

A monoid M is aperiodic if every group contained in M is trivial.



Theorem .

A language Lis starfres if , and only if , My is finits and aperiodic .

(Schützenberger , 1965)



Let M be a finite monoid. For every eatM , there exist 120 such that x
*
=c

(by the Pigeon-hole principle]

Define 12: = the smallest b such that there exists O2K1 with eck = e% and

b := the smallest 100 such that x = yes
,
and Pr

:= ke-fa
Since 150

,
22,
...,
<k-1 are all distinct

,
we can visualize this as :

xkn =xy
&

與
,

(
katz

o -" - ... . . . . . . . . . . . . .
"the frying pan"

a

Exercise. Ex 1 for < : < 1 ,24 is a group
contained on M

, isomorphis to /pat_

This lets us characterize aperiodic finite monoids in a soncrate way ,
and shows how they ar "opposite" to finite groups :



proposition Let M ba a finite monoid. The following are equivalent :

(1) M is aperiodic ; (2) for all SEM , pos = 1 ; (3) there exists 1sIN such that c = c
+

for all seM .

Roof . (1) = (2) By the Exercise, G := Easte , .., ph
-

-Y is a group contained in M.

If M is aperiodic , then this group must be trivial
. Thus

, pea
=#G = 1 .

fx+1
(2) = (3) Note thatect = cal+R = e · Define 1 : =max[:M3 ·

Thes
, for anyEM , x8

+ 1
= cality f -1 = xlexl - loc = ase .x
_ ~

'& this notation is bgal since 121 !
it is NOT allowed to have negative exponents.

(3) => (1) Let G be a group contained in
M

. Let got be arbitrary. By 331
. g =gltz

Pick he G such that gh= Ea .

Then 1 = gf) = gl+12) = g .

We conclude that G = 31gh , so G is trivial . □

Exercise . Let M be a finite monoid. The following are equivalent :

(1) M is a group ; (2) for all ceM , f = 0 ; (3) there exists faIN such that c= Im for allme .



A finite monoid is aperiodic iff all of its frying pans are only handles :

for all as :

^ x ㎡ -... : eat
℃ …

A finite monoid is a group iff all of its frying pans have no handles :

for all se :

l β
.

~

.c
'

2x = 7 0

\

: ;
…
パ

[The technical term for "frying pan" is cyalic submonoid or single-generated submonoid]



An additional perspective on starfree languages, via first-order logia :

Let4 be a sentence in the (relational) signature
に (4 , . す a } o Ʃ

,ar
)
,witharlal: = 1forallat Σ R

. Bob-Waksberg et al .,"
"

BoJack Horsemen
"

and ar(s) : = 2 .

( 2014 -2020)

A finite word we [
*

gives an I-structure Ma := (Ma , Mar , (Mulacs), where :
Mu := 50 , ..., (wl-1] , EMw = E

, for each at E , alw : = Losi < (w) : w has letter a at position it.

ExampleLet Ʃ= {aibyc, d
3 ,wi-aabac.Then Mw = ( Io ,9 ,2 , 3. 43 , ≤, ({ o,, 3 } ,{ } , {43 ,4 )

a a bac
MwF Jx (a(x) n Jy(x zy nb(y)))Monitor3 Or Mo # Jx (fy(x y -> a(y)))a

We define ((y) : = \we[
*

/ Mr F G] and call this the language defined by 4.
A languageLCI

*
is first-order definable if L = 2(y) for some first-order formula c.

Exercise .
Give first-order definitions of the languages [

*aaZ*, al*, and lab)*



Theorem A language L & [
*

is starfree if , and only if , L is first-order definable.
_

(Schützenberger ;
McNaughton &Papert]

We thus have three equivalent conditions on a languageLdI*:

1) L is starfree

2) L is first-order definable

3) M> is finite and a periodic.

We will only prova (2)()(3) and (1) =>(2) here. (We may do (2) = (3) in the Logic course .)

The proof will take us on a little tour of typical techniques in the theory of monoids , automata,

and logic , of which we will only see the tip of the iceberg here.


