

LOGIQUE

ENS Paris-Saclay

L3 informatique

2025-2026

Informations pratiques

<https://samvangool.net/logique.html>

- Cours : mercredi 14h - 16h 1268

Sam van Gool svangool@ens-paris-saclay.fr

- TD : mercredi 16h15 - 18h15 1268

Nicolas Dumange nicolas.dumange@ens-paris-saclay.fr

- Conditions de validation :

- Devoir maison publié le 18 mars , à rendre le 30 mars

30%

- Contrôle continu de TD

20%

- Examen final semaine du 18 mai

50%

notes maintenues
en 2^{ème} session
(rattrapage)

4 février - 13 mai

sauf: 11/02, 04/03, 29/04

Logic studies methods of reasoning.

In propositional logic, we have:

- atomic propositions P, Q, R, \dots

- connectives $\wedge, \rightarrow, \vee, \neg, \perp, \dots$

- truth tables

- Kripke models

In First-order (predicate) logic, we have the above, and:

- quantifiers \forall, \exists

- variables x, y, \dots

- (Tarski) structures

- function symbols f, g, \dots

- predicate symbols R, S, \leq, \dots

- models of a first-order theory

- equality $=$

An important theme in logic: a tension between syntax and semantics.

Syntactic methods are grouped as proof theory, semantic ones as model theory.

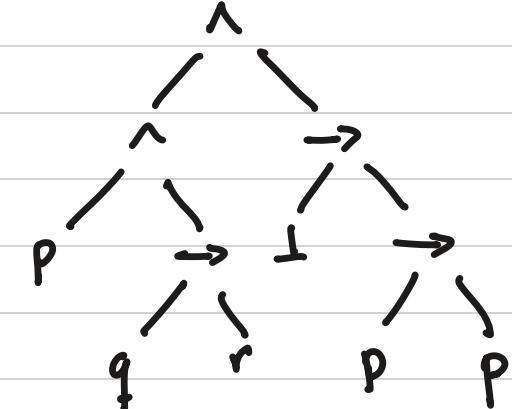
Many interesting results in logic happen at the interface of syntax & semantics.

1. Syntax

How to build propositional and first-order formulas

Let P_0 be a set, whose elements we will call **atomic propositions**.

- A **(propositional) formula** with atomic propositions in P_0 is an expression built inductively by applying:
 - for any $p \in P_0$, p is a formula;
 - for any formulas φ and ψ , $\varphi \wedge \psi$ is a formula;
 - for any formulas φ and ψ , $\varphi \rightarrow \psi$ is a formula;
 - \perp is a formula.
- We write $\text{Form}(P_0)$ for the set of formulas with atomic propositions in P_0 .
- For example, if $P_0 = \{p, q, r\}$, then $\varphi := (p \wedge (q \rightarrow r)) \wedge (\perp \rightarrow (p \rightarrow p))$ is a formula.
- Any formula has a **syntax tree**, for instance, the syntax tree of φ :
- We define some **abbreviations**, for any formulas φ, ψ :
 - $\neg \varphi := \varphi \rightarrow \perp$
 - $\varphi \vee \psi := \neg(\neg \varphi \wedge \neg \psi)$
 - $\varphi \oplus \psi := \varphi \text{ XOR } \psi := (\varphi \wedge \neg \psi) \vee (\neg \varphi \wedge \psi)$
 - $T := \perp \rightarrow \perp$
 - $\varphi \leftrightarrow \psi := (\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi)$



- The above definition of **propositional formula** is an example of an **inductive (or recursive) definition**: the concept is defined in terms of itself.

This is legal, provided that the "building blocks" are "smaller" than the thing being defined.

We take the idea of inductive definitions as basic, but fundamental. We obtain from it a useful:

Induction Principle Let $X \subseteq \text{Form}(P_0)$, and suppose that:

- for every $p \in P_0$, $p \in X$;
- for every $\varphi, \psi \in X$, $\varphi \wedge \psi \in X$ and $\varphi \rightarrow \psi \in X$; and
- $\perp \in X$.

Then $X = \text{Form}(P_0)$.

- There is no priority between connectives. The expression $p \wedge q \rightarrow r$ is ambiguous, as it can be read as either $(p \wedge q) \rightarrow r$ or $p \wedge (q \rightarrow r)$. Some authors define conventions to reduce parentheses, but we mostly prefer to write them. Exception: $\neg p \wedge q$ means $(\neg p) \wedge q$, not $\neg(p \wedge q)$.

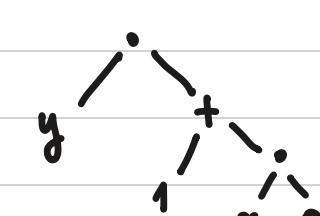
- A **signature** is a tuple $L = (F, P, ar)$ where F and P are (disjoint) sets and $ar : F \cup P \rightarrow \mathbb{N}$.
- We call elements of F **function symbols**, elements of P **predicate symbols or relation symbols**, and for $s \in F \cup P$, we call $ar(s)$ the **arity** of s .
- For $n \in \mathbb{N}$, we write $F_n := F \cap ar^{-1}(n)$ and $P_n := P \cap ar^{-1}(n)$.
- Let V be a set, whose elements we call **variables**.

A term with functions in F and variables in V is defined inductively by:
 $\text{Term}(F, V)$

- for any $x \in V$, x is a term
- for any $f \in F_n$ and any n -tuple of terms (t_1, \dots, t_n) , $f(t_1, \dots, t_n)$ is a term.

Example. Let $F_2 := \{+, \cdot\}$, $F_0 := \{0, 1\}$ and $F := F_0 \cup F_2$. Let $V := \{x, y\}$.

Then $\cdot(y, +(1, \cdot(x, 0)))$ is a term. We also write this as $y \cdot (1 + (x \cdot 0))$ (infix notation).

We can draw **syntax trees** for terms. An **occurrence** of a term s in a term t is a node in the syntax tree of t that generates the syntax tree of s . E.g.  has an occurrence of \cdot .

- A (first-order) formula in signature $L = (F, P, ar)$ and variables in V is defined inductively by:
 - for any $R \in P_n$ and any n -tuple of (F, V) -terms t_1, \dots, t_n , $R(t_1, \dots, t_n)$ is an (atomic) formula,
 - for any pair of terms s, t , $s = t$ is an (atomic) formula,
 - for any formulas φ, ψ , $\varphi \wedge \psi$ and $\varphi \rightarrow \psi$ are formulas,
 - \perp is a formula,
 - for any variable $x \in V$ and formula φ , $\forall x \varphi$ is a formula.

(NB: this is not an "occurrence" of x)

We write $\text{Form}(L, V)$ for the set of such formulas. (NB: same notation as propositional formulas!)

- The same abbreviations for $\neg, \vee, \top, \leftrightarrow, \text{XOR}$ apply here, and:

$$\exists x \varphi := \neg (\forall x (\neg \varphi)).$$

- Some authors omit (*). We call the resulting concept a (first-order) formula without equality.
- Let $\varphi \in \text{Form}(L, V)$ and $x \in V$. An occurrence of x in φ is bound if it is in the scope of some $\forall x$, and free otherwise. (NB: x may have free and bound occurrences in φ , or not occur in φ at all!)

$\text{ar}(\leq) := 2$

Example. Take F as before and $P := \{ \leq \}$. Then $(\forall x (\leq(x, \cdot (y, 1)))) \wedge (x = y)$ is a formula,

written in a more readable way: $(\forall x (x \leq y \cdot 1)) \wedge (x = y)$. y has two free occurrences,
 x has a bound and a free occurrence

Zero-o-logical remarks • If $F = \emptyset$, then the only terms are variables: "purely relational" signature.

- If $P = \emptyset$ then the only atomic formulas are equalities: "purely functional" or "algebraic" signature.
- Elements of F_0 are called **constant symbols**.
- Elements of P_0 are called **atomic propositions**.
- If $F = \emptyset$ and $P_n = \emptyset$ for all $n > 0$, then taking $V = \emptyset$ we see that first-order formulas in signature

L and without variables are the same thing as **propositional formulas** with atoms in P_0 .

- A formula with no free occurrences of variables is called a **sentence** or **closed formula**.

Exercise. A propositional formula with atoms in P_0 is also the same thing as a term with functions in $F := F_0 \cup F_2$ where $F_0 := \{ \top \}$ and $F_2 := \{ \wedge, \rightarrow \}$, and variables in P_0 .

2. Semantics

What it all means.

Let P_0 be a set of atomic propositions. We write $2 := \{0, 1\}$.

An interpretation is a function $M : P_0 \rightarrow 2$.

Given an interpretation M , we inductively define, for every $\varphi \in \text{Form}(P_0)$, a truth value, $[\varphi]_M$, by:

- for $p \in P_0$, $[\varphi]_M := M(p)$;
- for $\varphi, \psi \in \text{Form}(P_0)$, $[\varphi \wedge \psi]_M := [\varphi]_M \cdot [\psi]_M$;
- ——" —, $[\varphi \rightarrow \psi]_M := \max(1 - [\varphi]_M \cdot [\psi]_M) = \begin{cases} 0 & \text{if } [\varphi]_M = 1 \text{ and } [\psi]_M = 0, \\ 1 & \text{otherwise.} \end{cases}$
- $[\perp]_M := 0$.

Exercise. For any $\varphi, \psi \in \text{Form}(P_0)$, we have:

$$[\varphi \vee \psi]_M = \max([\varphi]_M, [\psi]_M), \quad [\neg \varphi]_M = 1 - [\varphi]_M, \quad [\top]_M = 1,$$

$$[\varphi \text{ XOR } \psi]_M = [\varphi]_M + [\psi]_M \bmod 2, \quad [\varphi \leftrightarrow \psi]_M = 1 - (([\varphi]_M - [\psi]_M)^2) = \begin{cases} 1 & \text{if } [\varphi]_M = [\psi]_M, \\ 0 & \text{otherwise.} \end{cases}$$

We write $M \models \varphi$ if $[\varphi]_M = 1$ and $M \not\models \varphi$ if $[\varphi]_M = 0$.

In short: $[\varphi]_M$ is the evaluation of φ in the Boolean algebra 2 , substituting $M(p)$ for each occurrence of p .

We call a propositional formula φ **valid** if, for all interpretations M , $M \models \varphi$,

satisfiable if there exists an interpretation M such that $M \models \varphi$,

unsatisfiable if, for all interpretations M , $M \not\models \varphi$.

Observation. φ is unsatisfiable if, and only if, $\neg\varphi$ is valid.

Examples.

$$\varphi_1 := (p \rightarrow q) \vee (q \rightarrow p)$$

$$\varphi_2 := \neg \neg p \rightarrow p$$

$$\varphi_3 := p \wedge ((q \vee r) \wedge (\neg q \vee r) \wedge (\neg r \vee s)) \wedge \neg p$$

Valid? Unsatisfiable?

SAT

(Cook & Levin)

Theorem The decision problem "given φ , is φ satisfiable?" is NP-complete, even for $\#P_0 = 3$.

In practice, there exist good algorithms, both theoretical and practical ("SAT-solvers").

In theory, there might exist a deterministic polynomial-time algorithm for SAT (although most experts don't think so).

The question is called **P vs NP**. A problem even many cannot solve (so far).

Proposition	RW's Estimated Likelihood
TRUE	100%
$\text{EXP}^{\text{NP}} \neq \text{BPP}$	99%
$\text{NEXP} \not\subseteq \text{P/poly}$	97%
$\text{L} \neq \text{NP}$	95%
$\text{NP} \not\subseteq \text{SIZE}(n^k)$	93%
$\text{BPP} \subseteq \text{SUBEXP}$	90%
$\text{P} \neq \text{PSPACE}$	90%
$\text{P} \neq \text{NP}$	80%
ETH	70%
$\text{NC1} \neq \text{TC0}$	50%
$\text{NEXP} \neq \text{EXP}$	45%
SETH	25%
$\text{NEXP} \neq \text{coNEXP}$	20%
NSETH	15%
$\text{L} \neq \text{RL}$	5%
FALSE	0%

Table 1. What you receive, when you ask for my opinions on some open problems in complexity theory.

We now extend the **semantics** from propositional to first-order logic.

Let $L = (F, P, \text{ar})$ be a signature. An **L-structure** is a tuple $\mathcal{M} = (M, (f^M)_{f \in F}, (R^M)_{R \in P})$

where:

- M is a set,
- for each $f \in F_n$, f^M is a function $M^n \rightarrow M$,
- for each $R \in P_n$, R^M is a subset of M^n .

Q. Why does it "extend" A. When $F = \emptyset$ and $P_n = \emptyset$ for all $n > 0$, $\mathcal{M} = (M, (p^M)_{p \in P_0})$, where, for each $p \in P_0$,

the propositional case?

$p^M \subseteq M^0$. Since $\#M_0 = 1$, $\#P(M_0) = 2$. So we can see M as a function $P_0 \rightarrow 2$.

Let V be a set of variables. A **valuation** of V in M is a function $v: V \rightarrow M$.

A valuation v of V in M extends (uniquely) to a **homomorphism** $\bar{v}: \text{Term}(F, V) \rightarrow M$, by induction:

- for $x \in V$, $\bar{v}(x) := v(x)$, and
- for $f \in F_n$ and $(t_1, \dots, t_n) \in \text{Term}(F, V)^n$, $\bar{v}(f(t_1, \dots, t_n)) := f^M(\bar{v}(t_1), \dots, \bar{v}(t_n))$.

(Check that the second rule is well-typed!)

Let M be an L -structure, V a set of variables, $v: V \rightarrow M$ a valuation of V in M .

When $x \in V$ and $m \in M$, we define $v[x \mapsto m] := \lambda y \text{ if } x=y \text{ then } m \text{ else } v(y)$.

In words, $v[x \mapsto m]$ is the valuation v in which we **update** the value at x to be m .

For a formula $\varphi \in \text{Form}(L, V)$, its **truth value**, $\llbracket \varphi \rrbracket_{M, v}$ under the valuation v is defined inductively:

- for $R \in P_n$ and $(t_1, \dots, t_n) \in \text{Term}(F, V)^n$, $\llbracket R(t_1, \dots, t_n) \rrbracket_{M, v} := 1 \text{ if } (\bar{v}(t_1), \dots, \bar{v}(t_n)) \in R^M, 0 \text{ otherwise}$;
- for $s, t \in \text{Term}(F, V)$, $\llbracket s = t \rrbracket_{M, v} := 1 \text{ if } \bar{v}(s) = \bar{v}(t), 0 \text{ otherwise}$;
- for $\varphi, \psi \in \text{Form}(L, V)$, $\llbracket \varphi \wedge \psi \rrbracket_{M, v} := \llbracket \varphi \rrbracket_{M, v} \cdot \llbracket \psi \rrbracket_{M, v}$ and $\llbracket \varphi \rightarrow \psi \rrbracket_{M, v} := \max(1 - \llbracket \varphi \rrbracket_{M, v}, \llbracket \psi \rrbracket_{M, v})$;
- for $\varphi \in \text{Form}(L, V)$ and $x \in V$, $\llbracket \forall x \varphi \rrbracket_{M, v} := 1 \text{ if for every } m \in M, \llbracket \varphi \rrbracket_{M, v[x \mapsto m]} = 1, 0 \text{ otherwise}$.

We write $M, v \models \varphi$ or $M \models_v \varphi$ if $\llbracket \varphi \rrbracket_{M, v} = 1$, and $M, v \not\models \varphi$ or $M \not\models_v \varphi$ if $\llbracket \varphi \rrbracket_{M, v} = 0$.

Exercise. $\llbracket \exists x \varphi \rrbracket_{M, v} = 1$ iff there exists $m \in M$ such that $\llbracket \varphi \rrbracket_{M, v[x \mapsto m]} = 1$.

(and of course the analogous facts hold for $\neg, \vee, \top, \leftrightarrow, \text{XOR}$, as in the propositional setting.)

Lemma. If a variable x has no free occurrence in φ , then $[\![\varphi]\!]_{M,v}$ does not depend on the value of v at x , i.e., if v and v' are valuations with $v(y) = v'(y)$ for all $y \in V - \{x\}$, then $[\![\varphi]\!]_{M,v} = [\![\varphi]\!]_{M,v'}$.

Proof. 1) We first show by induction that, for any term t in which t does not occur, $\bar{v}(t) = \bar{v}'(t)$.

2) We next show by induction on φ that $[\![\varphi]\!]_{M,v} = [\![\varphi]\!]_{M,v'}$.

This is a good exercise in using inductive definitions! □

Because of the above Lemma, when evaluating $[\![\varphi]\!]_{M,v}$, we may restrict v to the variables occurring freely in φ .

Notation. "Let $\varphi(x_1, \dots, x_n)$ be a formula" means: "Let φ be a formula such that, if x occurs freely in φ , then $x \in \{x_1, \dots, x_n\}$ ".

Let $\varphi(x_1, \dots, x_n)$ be a formula, and $\bar{m} := (m_1, \dots, m_n) \in M^n$.

We write $M, \bar{m} \models \varphi$ if $M, v \models \varphi$, where v is any valuation such that

$$v(x_i) = m_i \text{ for every } 1 \leq i \leq n.$$

When φ is a sentence, we write $M \models \varphi$ (since \bar{m} is then an empty tuple).

Some authors extend this notation: $M \models \varphi$ means $M \models_v \varphi$ for all valuations v .

Example. As before, let $L = (F, P, \text{ar})$ with $F = \{+, \cdot, 0, 1\}$ and $P = \{\leq\}$.

Consider $\mathcal{N} = (\mathbb{N}, +^{\mathcal{N}}, \cdot^{\mathcal{N}}, 0^{\mathcal{N}}, 1^{\mathcal{N}}, \leq^{\mathcal{N}})$ where,

for any $m, n \in \mathbb{N}$,

$m +^{\mathcal{N}} n$	$:= m + n$
$m \cdot^{\mathcal{N}} n$	$:= m \cdot n$
$0^{\mathcal{N}}$	$:= 0$
$1^{\mathcal{N}}$	$:= 1$
$\leq^{\mathcal{N}}$	$:= \{(m, n) \in \mathbb{N}^2 \mid m \leq n\}$

Then \mathcal{N} is an L -structure, satisfying familiar facts such as:

$$\mathcal{N} \models \forall x \forall y (x + y = y + x) \text{ and } \mathcal{N} \models \forall x (x \cdot 0 = 0) \text{ and } \mathcal{N} \models \forall x (0 \leq x)$$

However, nothing so far prevents us from considering the L -structure

$$\mathcal{M} := (\mathbb{N}, +^{\mathcal{M}}, \cdot^{\mathcal{M}}, 0^{\mathcal{M}}, 1^{\mathcal{M}}, \leq^{\mathcal{M}}) \quad \text{where, for any } m, n \in \mathbb{N},$$

$m +^{\mathcal{M}} n$	$:= m^2$
$m \cdot^{\mathcal{M}} n$	$:= 42$
$0^{\mathcal{M}}$	$:= 2026$
$1^{\mathcal{M}}$	$:= 1$
$\leq^{\mathcal{M}}$	$:= \{(m, n) \in \mathbb{N}^2 \mid m < n\}$

In this (unusual) L -structure, **none** of the above sentences are valid,

while, for example $\mathcal{M} \models 1 \leq 0$, and $\mathcal{M} \models \forall x (\neg(x \cdot 0 = 0))$.

Still, certain sentences are true in **all** structures, e.g., $\forall x (x \leq y \vee \neg(x \leq y))$.

Such sentences are called **tautologies**.

In practice, we are often interested not in "pure" tautologies, but in **consequences** of a theory.

A **theory** in a signature L is a set of L -sentences.

A **model** of a theory T is an L -structure M such that, for every $\varphi \in T$, $M \models \varphi$.

A (**semantic**) **consequence** of a theory T is a sentence φ such that, for any model M of T ,

it is the case that $M \models \varphi$. Notation: ' $T \models \varphi$ '. When $T = \{\psi\}$: ' $\psi \models \varphi$ '. When $T = \emptyset$: ' $\models \varphi$ '.

Sentences φ and ψ are (**semantically**) **equivalent** if both $\varphi \models \psi$ and $\psi \models \varphi$. Notation: ' $\varphi \equiv \psi$ '.

Example. Let $L = (\{\cdot, 1\}, \emptyset, \text{ar} : (\cdot \mapsto 2, 1 \mapsto 0))$, and $T := \{ \forall x (x \cdot 1 = x), \forall x (1 \cdot x = x), \forall x \forall y \forall z ((x \cdot y) \cdot z = x \cdot (y \cdot z)) \}$.

Then a **model** of T is the same thing as a monoid.

$T \models \varphi$ means: φ is true in all monoids.

For example, $T \models 1 \cdot 1 = 1$, and $T \models \forall x ((x \cdot x) \cdot x = x \cdot (x \cdot x))$.

However, $T \not\models \forall x \forall y (x \cdot y = y \cdot x)$, because there exist non-commutative monoids.

(In this example, T is finite, but there exist many infinik theories of interest. For instance, the theories PA (Peano Arithmetic) or ZF (Zermelo-Fraenkel) are infinik theories in the sense given here.)

German for "decision problem".

Entscheidungsproblem. Given a sentence φ as input, decide whether or not $\models \varphi$.

(Hilbert & Ackermann, 1928)

This is not just any decision problem. It's the **first** one ever shown to be undecidable:

Theorem There is no algorithm for solving the Entscheidungsproblem.

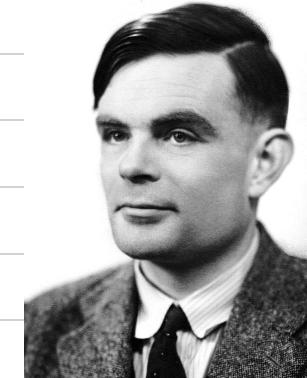
(Church & Turing, independently, both in 1936)

Proof (Sketch) One can define a signature L , and, for every $n \in \mathbb{N}$, an L -sentence φ_n , such that

$\models \varphi_n$ if, and only if, the n^{th} Turing machine halts on all inputs

(or: the n^{th} computable function is total). \square

David Hilbert (1862-1943)



Alan Turing (1912-1954)

Alonzo Church (1903-1995)

3. Natural deduction

How to prove things, formally.

We now return to the syntactic side, and define what it means to **prove** something.

In fact, there are many possible definitions of "proof", and we call a **proof system** or **calculus** one such choice.

We begin with a system called **natural deduction**, and we first look at **propositional logic**.

Let P_0 be a set of atomic propositions. A **sequent** is an element of $\mathcal{P}(\text{Form}(P_0)) \times \text{Form}(P_0)$.

We will denote such a pair by $\Gamma \Rightarrow \varphi$. (Capital Greek letter for "set of formulas", lowercase Greek letter for "formula". The arrow \Rightarrow is just a notation.)

We define the set \mathcal{D} of (**natural deduction**) **derivable** sequents inductively by:

- (Ax) • if $\varphi \in \Gamma$, then $\Gamma \Rightarrow \varphi$ is derivable;
- (\wedge I) • if $\Gamma_1 \Rightarrow \varphi_1$ and $\Gamma_2 \Rightarrow \varphi_2$ are derivable, then $\Gamma_1 \cup \Gamma_2 \Rightarrow \varphi_1 \wedge \varphi_2$ is derivable;
- (\wedge E) • if $\Gamma \Rightarrow \varphi \wedge \psi$ is derivable, then $\Gamma \Rightarrow \varphi$ is derivable and $\Gamma \Rightarrow \psi$ is derivable;
- (\rightarrow I) • if $\Gamma \cup \{\varphi\} \Rightarrow \psi$ is derivable, then $\Gamma \Rightarrow \varphi \rightarrow \psi$ is derivable;
- (\rightarrow E) • if $\Gamma_1 \Rightarrow \varphi$ is derivable and $\Gamma_2 \Rightarrow \varphi \rightarrow \psi$ is derivable, then $\Gamma_1 \cup \Gamma_2 \Rightarrow \psi$ is derivable.
- (\perp E) • if $\Gamma \Rightarrow \perp$ is derivable, then, for any φ , $\Gamma \Rightarrow \varphi$ is derivable.
- (C) • if $\Gamma \cup \{\neg \varphi\} \Rightarrow \perp$ is derivable, then $\Gamma \Rightarrow \varphi$ is derivable.

Example. $\{p\} \Rightarrow q \rightarrow p$ is derivable, for any $p, q \in P_0$.

Proof. By (Ax), $\{p, q\} \Rightarrow p$ is derivable. By ($\rightarrow I$), $\{p\} \Rightarrow q \rightarrow p$ is derivable. \square

We define the notation $\Gamma \vdash \varphi$ for: "the sequent $\Gamma \Rightarrow \varphi$ is derivable".

We can now write the definition of \vdash more succinctly as:

$$\begin{array}{c}
 \text{(Ax)} \frac{\varphi \in \Gamma}{\Gamma \vdash \varphi} \quad \text{(\wedge I)} \frac{\Gamma_1 \vdash \varphi \quad \Gamma_2 \vdash \psi}{\Gamma_1, \Gamma_2 \vdash \varphi \wedge \psi} \quad \text{(\wedge E_L)} \frac{\Gamma \vdash \varphi \wedge \psi}{\Gamma \vdash \varphi} \quad \text{(\wedge E_R)} \frac{\Gamma \vdash \varphi \wedge \psi}{\Gamma \vdash \psi} \quad \text{(\perp E)} \frac{\Gamma \vdash \perp}{\Gamma \vdash \varphi} \\
 \\
 \text{(\rightarrow I)} \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} \quad \text{(\rightarrow E)} \frac{\Gamma_1 \vdash \varphi \quad \Gamma_2 \vdash \varphi \rightarrow \psi}{\Gamma_1, \Gamma_2 \vdash \psi} \quad \text{(C)} \frac{\Gamma, \neg \varphi \vdash \perp}{\Gamma \vdash \varphi} \rightarrow \text{"proof by contradiction"}
 \end{array}$$

Example. $\frac{\text{(Ax)} \quad p \in \{p, q\}}{p, q \vdash p}$ $\xleftarrow{\text{usually omitted}}$

$$\frac{\text{(\rightarrow I)} \quad p, q \vdash p}{p \vdash q \rightarrow p}$$

Notation: $\frac{A}{B}$ means: "if A, then B".

"premises" $\rightarrow \frac{A_1 \quad A_2}{B}$ means "if A_1 and A_2 , then B"
 "conclusion" $\rightarrow B$

Γ, φ means " $\Gamma \cup \{\varphi\}$ " and Γ_1, Γ_2 means " $\Gamma_1 \cup \Gamma_2$ "

Example. $\vdash \varphi \rightarrow (\neg \varphi \rightarrow \psi)$ for any formulas φ, ψ .

Proof.

$$\begin{array}{c}
 (\text{Ax}) \quad \frac{}{\varphi \vdash \varphi} \quad (\text{Ax}) \quad \frac{}{\neg \varphi \vdash \neg \varphi} \\
 (\rightarrow E) \frac{\varphi \vdash \varphi \quad \neg \varphi \vdash \neg \varphi}{\varphi, \neg \varphi \vdash \perp} \\
 (\perp E) \frac{\varphi, \neg \varphi \vdash \perp}{\varphi, \neg \varphi \vdash \psi} \\
 (\rightarrow I) \frac{\varphi \vdash \neg \varphi \rightarrow \psi}{\vdash \varphi \rightarrow (\neg \varphi \rightarrow \psi)}
 \end{array}$$

$$\begin{array}{c}
 \Gamma_1 \quad \Gamma_2 \\
 \varphi \vdash \varphi \quad \varphi \rightarrow \perp \vdash \varphi \rightarrow \perp \\
 \frac{\Gamma_1, \Gamma_2}{\varphi, \varphi \rightarrow \perp \vdash \perp} \\
 \frac{}{\psi}
 \end{array}$$

Example $\neg \neg \varphi \vdash \varphi$ for any formula φ

$$\begin{array}{c}
 (\text{Ax}) \quad \frac{}{\neg \neg \varphi \vdash \neg \neg \varphi} \quad (\text{Ax}) \quad \frac{}{\neg \varphi \vdash \neg \varphi} \\
 (\rightarrow E) \frac{\neg \neg \varphi \vdash \neg \neg \varphi \quad \neg \varphi \vdash \neg \varphi}{\neg \neg \varphi, \neg \varphi \vdash \perp} \\
 (\text{C}) \frac{\neg \neg \varphi, \neg \varphi \vdash \perp}{\neg \neg \varphi \vdash \varphi}
 \end{array}$$

$$\frac{\Gamma_1 \vdash \varphi' \rightarrow \varphi \quad \Gamma_2 \vdash \varphi'}{\Gamma_1 \cup \Gamma_2 \vdash \perp}$$

$$\begin{array}{l}
 \Gamma_1 = \{\neg \neg \varphi\} \\
 \Gamma_2 = \{\neg \varphi\} \\
 \varphi' = \varphi \rightarrow \perp \\
 \varphi = \perp
 \end{array}$$

There exist **other notations** for Natural Deduction proofs, due to Jaśkowski, Fitch, Suppes.

Example. $\varphi \vdash \neg \varphi \rightarrow \varphi$. The proof in **Suppes-style**:

{1} 1. φ (Ax)

{2} 2. $\neg \varphi$ (Ax)

{1,2} 3. \perp ($\rightarrow E$ 1,2)

{1,2} 4. φ ($\perp E$ 3)

{1} 5. $\neg \varphi \rightarrow \varphi$ ($\rightarrow I$ 2,4)

Each line i has form " $S \ i. \ \Theta_i \ (R)$ ";
where S is a set of indices $\leq i$, and R is a rule together
with indices pointing to where the premises are found.

To convert this notation into a derivation like before,
read each line as a sequent $\{\Theta_j : j \in S\} \Rightarrow \Theta_i$:

$$\begin{array}{c} (\text{Ax}) \frac{}{\varphi \vdash \varphi} \quad \frac{}{\neg \varphi \vdash \neg \varphi} (\text{Ax}) \\ \hline \frac{1. \varphi \vdash \varphi \quad 2. \neg \varphi \vdash \neg \varphi}{3. \varphi, \neg \varphi \vdash \perp} (\perp E) \\ \hline \frac{3. \varphi, \neg \varphi \vdash \perp}{4. \varphi, \neg \varphi \vdash \varphi} (\rightarrow I) \\ \hline \frac{}{5. \varphi \vdash \neg \varphi \rightarrow \varphi} \end{array}$$

Fitch-style:

$$\boxed{\begin{array}{c} \varphi \\ | \\ \neg \varphi \\ | \\ \perp \\ | \\ \varphi \\ \hline \neg \varphi \rightarrow \varphi \end{array}}$$